• Title/Summary/Keyword: Inducible nitric oxide

Search Result 1,202, Processing Time 0.034 seconds

Curcumin Inhibits Ovalbumin-Induced Inducible Nitric Oxide Synthase Expression (Curcumin은 ovalbumin에 의해서 유도된 inducible nitric oxide synthase 억제)

  • Kim, Ji-Soo;Ahn, Hee-Jin;Shin, Hwa-Jeong;Gu, Gyo-Jeong;Eum, Sang-Hoon;Lee, Chung-Ho;Min, In-Soon;Youn, Hyung-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.498-501
    • /
    • 2012
  • Egg allergy has been reported as the most prevalent food hypersensitivity among children. One of the major egg allergens is ovalbumin (OVA). OVA is the major protein in the egg white, comprising 54% of its total protein content. Curcumin isolated from Curcuma longa has been used as folk remedies in order to treat many chronic diseases for many years. In the present report, we present biochemical evidence that curcumin inhibits the NF-${\kappa}B$ activation induced by OVA. Curcumin also inhibits OVA-induced iNOS expression and nitrite production. These data suggest new approaches for the development of efficient anti-allergic strategies.

Comparison of Anti-inflammatory effects between Artemisia capillaris and Artemisia iwayomogi by extraction solvents (인진호(茵蔯蒿)와 한인진(韓茵蔯)의 추출용매별 항염증 효능 비교)

  • Noh, Dongjin;Choi, Jin Gyu;Hong, Soon-Sun;Oh, Myung Sook
    • The Korea Journal of Herbology
    • /
    • v.33 no.3
    • /
    • pp.55-61
    • /
    • 2018
  • Objectives : Artemisia capillaris Thunberg (AC) and Artemisia iwayomogi Kitamura (AI) have been used without distinguishment since ancient times due to similar appearance. In this study, we compared the inhibitory effects of AC and AI on the expression of inflammatory cytokines induced by lipopolysaccharide (LPS) in murine macrophages. Methods : AC and AI were extracted by reflux with distilled water (DW) and 70% ethanol (EtOH). We investigated the inhibitory effects of AC and AI on the expression of nitric oxide (NO), inducible NO synthase (iNOS) and tumor necrosis $factor-{\alpha}$($TNF-{\alpha}$) induced by LPS in macrophages. Results : Firstly, yield of the samples was higher in order of Artemisia iwayomogi DW Extract (AID), Artemisia iwayomogi 70% EtOH Extract (AIE), Artemisia capillaris DW Extract (ACD) and Artemisia capillaris 70% EtOH Extract (ACE). All of the samples were not toxic in macrophages. The inhibitory effect of the samples on LPS-induced NO expression was stronger in the order of AIE, ACE, AID and ACD. The inhibitory effect of the samples on LPS-induced inducible iNOS expression was stronger in the order of AIE, ACE and AID. Effect of ACD was same with that of AID. In addition, inhibitory effect of the samples on LPS induced $TNF-{\alpha}$expression wes stronger in the order of AIE, ACE, AID and ACD. Conclusion: These results showed that AI would be more effective than AC and 70% EtOH would be more effective than DW as an extraction solvent in inflammatory diseases.

Inducible Nitric Oxide Synthase Mediates the Triglyceride-induced Death of THP-1 Monocytes

  • Byung Chul Jung;Hyun-Kyung Kim;Jaewon Lim;Sung Hoon Kim;Yoon Suk Kim
    • Biomedical Science Letters
    • /
    • v.29 no.2
    • /
    • pp.66-74
    • /
    • 2023
  • Triglyceride (TG) accumulation can cause monocytic death and suppress innate immunity. However, the signaling pathways involved in this phenomenon are not fully understood. This study aimed to examine whether inducible nitric oxide synthase (iNOS) is involved in the TG-induced death of THP-1 monocytes. Results showed that iNOS was upregulated in TG-treated THP-1 monocytes, and iNOS inhibition blocked TG-induced monocytic death. In addition, TG-induced poly (ADP-ribose) polymerase (PARP) cleavage and caspase-3 and -7 activation were suppressed by iNOS inhibition. Furthermore, the expression of X-linked inhibitor of apoptosis protein (XIAP) and survivin, which inhibit caspase-3 and -7, was reduced in TG-treated THP-1 monocytes, but iNOS inhibition recovered the TG-induced downregulation of XIAP and survivin expression. Considering that TG-induced monocytic death is triggered by caspase2 and -8, we investigated whether caspase-2 and -8 are linked to the TG-induced expression of iNOS in THP-1 monocytes. When the activities of caspase-2 and -8 were inhibited by specific inhibitors, the TG-induced upregulation of iNOS and downregulation of XIAP and survivin were restored in THP-1 monocytes. These results suggest that TG-induced monocytic death is mediated by the caspase-2/caspase-8/iNOS/XIAP and survivin/executioner caspase/PARP pathways.

In vitro anti-inflammatory activity of extracts from Potentilla supina in murine macrophage RAW 264.7 cells (개소시랑개비 추출물의 RAW264.7대식세포에서 in vitro 항염효과)

  • Nam, Jung-Hwan;Kim, Hyun-Sam;Kim, Byoumg-Jin;Yu, Hong-Seob;Chang, Dong-Chil;Jin, Yong-Ik;Yoo, Dong-Lim;Choi, Jong-Keun;Park, Hee-Jhun;Lee, Seung-Bin;Lee, Kyung-Tea;Park, Soo-Jin
    • Journal of Plant Biotechnology
    • /
    • v.44 no.1
    • /
    • pp.76-81
    • /
    • 2017
  • Potentilla supina (Rosaceae) has traditionally been used to treat disorders of hemostasis, dysentery, malaria, bloody discharge and arthritis, and it has antinociceptive and anti-inflammatory properties. However, validity of the anti-inflammatory activity has not been scientifically investigated so far. Therefore, the aim of this study was to investigate the anti-inflammatory potential of P. supina using the ethanolic extract of P. supina and its sub-fractions. To evaluate the anti-inflammatory effects of P. supina, we examined the inflammatory mediators such as nitric oxide (NO), inducible nitric oxide synthase (iNOS) and prostaglandin $E_2$ ($PGE_2$) in RAW 264.7 cells. Our results indicated that ethyl acetate fraction significantly inhibited LPS-induced NO, iNOS and $PGE_2$ production in RAW 264.7 cells. This result showed that ethyl acetate fraction of P. supina is expected to be a good candidate for development into a source of anti-inflammatory agents.

Immunoelectron Microscopic Study on the Nitric Oxide Synthase in Rat Salivary Glands (흰쥐 침샘의 Nitric Oxide Synthase에 관한 면역전자현미경적 연구)

  • Lee, Young-Hwan;Ko, Jeong-Sik;Park, Dae-Kyoon;Park, Kyung-Ho
    • Applied Microscopy
    • /
    • v.38 no.3
    • /
    • pp.221-233
    • /
    • 2008
  • Endogenous nitric oxide (NO) has been known to regulate many physiological and pathological processes, especially the glandular secretion and blood flow. However, nitric oxide synthase (NOS) responsible for NO synthesis has not been well studied ultrastructurally in rat salivary gland. The present study was performed to investigate the distribution of nitric Oxide synthase isoforms (endothelial. neuronal, and inducible NOS). Immunoelectron microscopic study, using monoclonal mouse anti-endothelial NOS, anti-neuronal NOS, and anti-inducible NOS, was performed in the salivary gland of rat. Endothelial NOS (eNOS)-positive immunoreactivities were most prominent in the secretory granules of serous cells of the salivary gland of the rat. Immunoreactivities were well concentrated on serous secretory granules in the serous cells. However, weak eNOS-positive immunoreactivity was observed in the mucous secretory granules of the mucous cells. Positive endothelial NOS (eNOS) immunoreactivities were most prominent in the secretory granules of intralobular ducts. Ductal secretory granules and acinar serous secretory granules have a similar pattern of labeling as eNOS suggestings. Neural NOS (nNOS)-positive immunoreactivity was not detected in duct systems or in acinar cells. Inducible NOS (iNOS)-positive immunoreactivity was not seen in acinar and ductal cells. These results reveal the presence of eNOS in the salivary gland of the rat, which may be related with regulation of the glandular secretion and blood flow through the gland.

Inhibition of LPS-induced NO Production and NT-$\textsc{k}B$ Activation by a Sesquiterpene from Saussurea lappa

  • Jin, Mirim;Lee, Hwa-Jin;Ryu, Jae-Ha;Chung, Kyu-Sun
    • Archives of Pharmacal Research
    • /
    • v.23 no.1
    • /
    • pp.54-58
    • /
    • 2000
  • To elucidate the molecular mechanisms for the suppression of LPS-induced nitric oxide (NO) production by a dehydrocostus lactone (DL) from Saussurea lappa, we examined the preventive effect of this compound on $NF-{\kappa}B$ activation in LPS-treated RAW 264.7 macrophages and U937 human monocytic cells. The results suggest that the suppression of NO production is mediated by the inhibitory action on the i-NOS gene expression through the inactivation of $NF-{\kappa}B$ and this sesquiterpene lactone can act as a pharmacological inhibitor of the $NF-{\kappa}B$ activation.

  • PDF

ACTIVATION OF NF-$\textsc{k}$B AND INDUCTION OF CYCLOOXYGENASE-2 BY NITRIC OXIDE IN MOUSE SKIN

  • Cha, Hyun-Ho;Chun, Kyung-Soo;Kim, Hee-Kyung;Park, Kwang-Kyun;Byeongwoo Ahn;Surh, Young-Joon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.05a
    • /
    • pp.153-153
    • /
    • 2001
  • Nitric oxide (NO) has multifaceted roles in carcinogenesis. Besides acting as an initiator, NO may also playa role in the promotional stage of tumorigenesis or neoplastic transformation. In line with this notion, our previous studies have revealed that the tumor promotor phorbol ester induces expression of inducible nitric oxide synthase (iNOS) and NO production in mouse skin.(omitted)

  • PDF

Suppression Effect of Curcuma longa Rhizome-Derived Components against Nitric Oxide Synthase

  • Lee, Hoi-Seon
    • Journal of Applied Biological Chemistry
    • /
    • v.52 no.4
    • /
    • pp.212-215
    • /
    • 2009
  • The inhibitory effects of Curcuma longa rhizome-derived materials against nitric oxide (NO) production were assessed. The inhibitory effect (57%) on NO production was evidenced by the methanol extract of C. longa at $1\;{\mu}g/mL$. In the fractionation of the methanol extract, the ethyl acetate fraction evidenced an inhibitory effect greater than 62.1% at $1\;{\mu}g/mL$. The active constituent was identified as curcumin. Curcumin exerted potent inhibitory effects of 78.7 and 65.7% at concentrations of 1 and $0.5\;{\mu}g/mL$, respectively. Furthermore, the inhibitory effect of ar-turmerone was measured as 31.3 and 15.8% at 1 and $0.5\;{\mu}g/mL$, respectively. The iNOS expression-suppressive effects of curcumin were assessed via western blot analysis. Our results suggest that curcumin and ar-turmerone may prove useful in the development of new types of NO inhibitors.

Inhibitory effects of natural products on lipopolysaccharide-stimulated PGE2 and nitric oxide production in RAW 264.7 cells

  • Park, Hye-Jin;Min, Hye-Young;Park, Dong-Ki;Lee, Sang-Kook
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.268.2-269
    • /
    • 2003
  • Prostaglandins (PGs) and NO (nitric oxide) are important elements to keep homeostasis and host defense system in human beings. When PGs and NO are overproduced by cyclooxygenase-2(COX-2) and inducible nitric oxide synthase (iNOS), respectively, they can cause chronic inflammation, tissue damage, and carcinogenesis. On this line, we are interested in finding agents that can inhibit the production of PGs and NO from natural products for devloping anti-inflammatory and cancer chemopreventive agents. (omitted)

  • PDF

Anti-inflammatory Effect of Quercus Salicina in IFN-${\gamma}$/LPS-stimulated Mouse Peritoneal Macrophage

  • Cho, Kyung-Hee;Choi, Jae-Hyuk;Jeon, Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.3
    • /
    • pp.540-545
    • /
    • 2011
  • Quercus salicina has been widely used as a traditional medicine for the treatment of various diseases. In macrophages, nitric oxide (NO) is released as an inflammatory mediator and has been proposed to be an important modulator of many pathophysiological conditions in inflammation. In the present study, the inhibitory effect of methanolic extracts of Q. salicina (QSM) on NO production in LPS-stimulated mouse (C57BL/6) peritoneal macrophages was investigated. QSM suppressed NO production without notable cytotoxiciy. QSM also exhibited down-regulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression via attenuation of NF-${\kappa}B$ translocation to nucleus in rIFN-${\gamma}$ and LPS stimulated mouse peritoneal macrophages. The present study strongly suggest that Q. salicina may be beneficial in diseases which related to macrophage-mediated inflammatory disorders.