• Title/Summary/Keyword: Induced earthquakes

Search Result 196, Processing Time 0.023 seconds

Evaluation of the effect of smart façade systems in reducing dynamic response of structures subjected to seismic loads

  • Samali, Bijan;Abtahi, Pouya
    • Earthquakes and Structures
    • /
    • 제11권6호
    • /
    • pp.983-1000
    • /
    • 2016
  • To date the engineering community has seen facade systems as non-structural elements with high aesthetic value and a barrier between the outdoor and indoor environments. The role of facades in energy use in a building has also been recognized and the industry is also witnessing the emergence of many energy efficient facade systems. This paper will focus on using exterior skin of the double skin facade system as a dissipative movable element during earthquake excitation. The main aim of this study is to investigate the potential of the facade system to act as a damper system to reduce earthquake-induced vibration of the primary structure. Unlike traditional mass dampers, which are usually placed at the top level of structures, the movable/smart double skin facade systems are distributed throughout the entire height of building structures. The outer skin is moveable and can act as a multi tuned mass dampers (MTMDs) that move and dissipate energy during strong earthquake motions. In this paper, using a three dimensional 10-storey building structure as the example, it is shown that with optimal choice of materials for stiffness and damping of brackets connecting the two skins, a substantial portion of earthquake induced vibration energy can be dissipated which leads to avoiding expensive ductile seismic designs. It is shown that the engineering demand parameters (EDPs) for a low-rise building structures subjected to moderate to severe earthquakes can be substantially reduced by introduction of a smart designed double skin system.

Applied methods for seismic assessment of scoured bridges: a review with case studies

  • Guo, Xuan;Badroddin, Mostafa;Chen, ZhiQiang
    • Earthquakes and Structures
    • /
    • 제13권5호
    • /
    • pp.497-507
    • /
    • 2017
  • Flooding induced scour has been long recognized as a major hazard to river-crossing bridges. Many studies in recent years have attempted to evaluate the effects of scour on the seismic performance of bridges, and probabilistic frameworks are usually adopted. However, direct and straightforward insight about how foundation scour affects bridges as a type of soil-foundation-structure system is usually understated. In this paper, we provide a comprehensive review of applied methods centering around seismic assessment of scoured bridges considering soil-foundation-structure interaction. When introducing these applied analysis and modeling methods, a simple bridge model is provided to demonstrate the use of these methods as a case study. Particularly, we propose the use of nonlinear modal pushover analysis as a rapid technique to model scoured bridge systems, and numerical validation and application of this procedure are given using the simple bridge model. All methods reviewed in this paper can serve as baseline components for performing probabilistic vulnerability or risk assessment for any river-crossing bridge system subject to flood-induced scour and earthquakes.

Lifetime seismic performance assessment of high-rise steel-concrete composite frame with buckling-restrained braces under wind-induced fatigue

  • Liu, Yang;Li, Hong-Nan;Li, Chao;Dong, Tian-Ze
    • Structural Engineering and Mechanics
    • /
    • 제77권2호
    • /
    • pp.197-215
    • /
    • 2021
  • Under a severe environment of multiple hazards such as earthquakes and winds, the life-cycle performance of engineering structures may inevitably be deteriorated due to the fatigue effect caused by long-term exposure to wind loads, which would further increase the structural vulnerability to earthquakes. This paper presents a framework for evaluating the lifetime structural seismic performance under the effect of wind-induced fatigue considering different sources of uncertainties. The seismic behavior of a high-rise steel-concrete composite frame with buckling-restrained braces (FBRB) during its service life is systematically investigated using the proposed approach. Recorded field data for the wind hazard of Fuzhou, Fujian Province of China from Jan. 1, 1980 to Mar. 31, 2019 is collected, based on which the distribution of wind velocity is constructed by the Gumbel model after comparisons. The OpenSees platform is employed to establish the numerical model of the FBRB and conduct subsequent numerical computations. Allowed for the uncertainties caused by the wind generation and structural modeling, the final annual fatigue damage takes the average of 50 groups of simulations. The lifetime structural performance assessments, including static pushover analyses, nonlinear dynamic time history analyses and fragility analyses, are conducted on the time-dependent finite element (FE) models which are modified in lines with the material deterioration models. The results indicate that the structural performance tends to degrade over time under the effect of fatigue, while the influencing degree of fatigue varies with the duration time of fatigue process and seismic intensity. The impact of wind-induced fatigue on structural responses and fragilities are explicitly quantified and discussed in details.

Effects of consecutive earthquakes on increased damage and response of reinforced concrete structures

  • Amiri, Gholamreza Ghodrati;Rajabi, Elham
    • Computers and Concrete
    • /
    • 제21권1호
    • /
    • pp.55-66
    • /
    • 2018
  • A large main shock may consist of numerous aftershocks with a short period. The aftershocks induced by a large main shock can cause the collapse of a structure that has been already damaged by the preceding main shock. These aftershocks are important factors in structural damages. Furthermore, despite what is often assumed in seismic design codes, earthquakes do not usually occur as a single event, but as a series of strong aftershocks and even fore shocks. For this reason, this study investigates the effect and potential of consecutive earthquakes on the response and behavior of concrete structures. At first, six moment resisting concrete frames with 3, 5, 7, 10, 12 and 15 stories are designed and analyzed under two different records with seismic sequences from real and artificial cases. The damage states of the model frames were then measured by the Park and Ang's damage index. From the results of this investigation, it is observed that the sequences of ground motions can almost double the accumulated damage and increased response of structures. Therefore, it is certainly insufficient to ignore this effect in the design procedure of structures. Also, the use of artificial seismic sequences as design earthquake can lead to non-conservative prediction of behavior and damage of structures under real seismic sequences.

필 댐에 관한 지진하중-간극수압의 상호작용 평가를 위한 기초연구 (An Basic Estimation for the Mutual action of Seismic load-Pore Pressure about Fill dam)

  • 정의중;백성철;남열우;이섬범;박인준;김홍택
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2007년도 정기총회 및 학술발표대회
    • /
    • pp.275-278
    • /
    • 2007
  • 필 댐의 내진해석은 간극수압을 고려하지 않을 경우에는 지진에 의한 동수압을 고려할 수 없기 때문에 지진력을 과소평가할 수 있다 그러나 현재까지도 필 댐의 내진해석에서 주요 변수에 따른 동수압의 변화는 연구 실적이 많지 않다. 따라서 본 연구에서는 지진하중과 간극수압을 모두 고려하는 경우에 대해 다양한 변수분석을 수행하여 지진과 간극수압의 상호작용을 알아보았다.

  • PDF

A preliminary case study of resilience and performance of rehabilitated buildings subjected to earthquakes

  • Hadigheh, S. Ali;Mahini, S. Saeed;Setunge, Sujeeva;Mahin, Stephen A.
    • Earthquakes and Structures
    • /
    • 제11권6호
    • /
    • pp.967-982
    • /
    • 2016
  • Current codes design the buildings based on life safety criteria. In a performance-based design (PBD) approach, decisions are made based on demands, such as target displacement and performance of structure in use. This type of design prevents loss of life but does not limit damages or maintain functionality. As a newly developed method, resilience-based design (RBD) aims to maintain functionality of buildings and provide liveable conditions after strong ground movement. In this paper, the seismic performance of plain and strengthened RC frames (an eight-story and two low-rise) is evaluated. In order to evaluate earthquake performance of the frames, the performance points of the frames are calculated by the capacity spectrum method (CSM) of ATC-40. This method estimates earthquake-induced deformation of an inelastic system using a reduced response spectrum. Finally, the seismic performances of the frames are evaluated and the results are compared with a resilience-based design criterion.

Hardening slip model for reinforcing steel bars

  • Braga, Franco;Caprili, Silvia;Gigliotti, Rosario;Salvatore, Walter
    • Earthquakes and Structures
    • /
    • 제9권3호
    • /
    • pp.503-539
    • /
    • 2015
  • A new constitutive model for the representation of the seismic behaviour of steel bars including hardening phenomena is presented. The model takes into account relative slip between bars and concrete, necessary for the estimation of the structural behaviour of r.c. elements and of the level of strain induced by earthquakes on bars. The present work provides the analytical formulation of the post-yielding behaviour of reinforcements, resulting in a continuous axial stress-slip relationship to be implemented in engineering software. The efficacy of the model is proved through the application to a cantilever column, for whose bars the constitutive law is derived.

다양한 지진에 따른 비선형 직접스펙트럼법의 오차해석 (Error Analysis of Nonlinear Direct Spectrum Method to Various Earthquakes)

  • 강병두;박진화;전대환;김재웅
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.53-60
    • /
    • 2002
  • It has been recognized that damage control must become a more explicit design consideration. In an effort to develop design methods based on performance it is clear that the evaluation of the inelastic response is required. The methods available to the design engineer today are nonlinear time history analyses, or monotonic static nonlinear analyses, or equivalent static analyses with simulated inelastic influences. Some codes proposed the capacity spectrum method based on the nonlinear static(pushover) analysis to determine earthquake-induced demand given the structure pushover curve. This procedure is conceptually simple but iterative and time consuming with some errors. This paper presents a nonlinear direct spectrum method to evaluate seismic Performance of structure, without iterative computations, given the structural initial elastic period and yield strength from the pushover analysis, especially for multi degree of freedom structures. The purpose of this paper is to investigate accuracy and confidence of this method from a point of view of various earthquakes and unloading stiffness degradation parameters.

  • PDF

토카이, 토난카이 및 난카이 대규모 지진으로 인한 지진해일의 전파특성에 관한 수치적 연구 (Numerical Study on Propagation Characteristics of Tsunami Induced by Tokai, Tonankai and Nankai Massive Earthquakes)

  • 카와사키 코지;스즈키 카즈키;이광호;김도삼
    • 한국해안·해양공학회논문집
    • /
    • 제25권6호
    • /
    • pp.386-393
    • /
    • 2013
  • 2011년 일본동북지방 대지진 이후, 규모 9.0의 토카이, 토난카이 및 난카이 대규모 지진이 일본 서부의 태평양 해안을 내습할 수 있다는 주장이 제기되고 있다. 본 연구에서는 태평양 해안과 일본의 주요 3대 만인 도쿄만과 이세만 그리고 오사카만에서 규모 9.0의 토카이, 토난카이 및 난카이 대규모 지진에 의해 발생하는 지진해일의 전파 특성을 수치적으로 검토하였다. 본 연구에서 수행된 수치해석결과 M9.0의 지진에 의해 발생하는 태평양 해안에서의 지진해일 높이는 M8.7의 지진에 비해 그 크기가 약 2배에 달하며 지진원으로부터 떨어진 일부 지역에서는 빠른 지진해일의 도달시간을 확인하였다. 또한, 페쇄된 만의 영향에 의해 오랜 시간 동안 만내에서 고수위가 지속됨을 알 수 있었다.

Damping and frequency changes induced by increasing levels of inelastic seismic demand

  • Aguirre, Diego A.;Montejo, Luis A.
    • Smart Structures and Systems
    • /
    • 제14권3호
    • /
    • pp.445-468
    • /
    • 2014
  • The objective in this research is to determine the feasibility of using changes on the dynamic properties of a reinforced concrete (RC) structure to identify different levels of seismic induced damage. Damping ratio and natural frequency changes in a RC bridge column are analyzed using different signal processing techniques like Hilbert Transforms, Random Decrement and Wavelet Transforms. The data used in the analysis was recorded during a full-scale RC bridge column shake table test. The structure was subjected to ten earthquake excitations that induced different levels of inelastic demand on the column. In addition, low-intensity white noises were applied to the column in-between earthquakes. The results obtained show that the use of the damping ratio and natural frequency of vibration as damage indicators is arguable.