• Title/Summary/Keyword: Indoor-Unit

Search Result 337, Processing Time 0.031 seconds

Development of an Artificial Neural Network Model for a Predictive Control of Cooling Systems (건물 냉방시스템의 예측제어를 위한 인공신경망 모델 개발)

  • Kang, In-Sung;Yang, Young-Kwon;Lee, Hyo-Eun;Park, Jin-Chul;Moon, Jin-Woo
    • KIEAE Journal
    • /
    • v.17 no.5
    • /
    • pp.69-76
    • /
    • 2017
  • Purpose: This study aimed at developing an Artificial Neural Network (ANN) model for predicting the amount of cooling energy consumption of the variable refrigerant flow (VRF) cooling system by the different set-points of the control variables, such as supply air temperature of air handling unit (AHU), condenser fluid temperature, condenser fluid pressure, and refrigerant evaporation temperature. Applying the predicted results for the different set-points, the control algorithm, which embedded the ANN model, will determine the most energy efficient control strategy. Method: The ANN model was developed and tested its prediction accuracy by using matrix laboratory (MATLAB) and its neural network toolbox. The field data sets were collected for the model training and performance evaluation. For completing the prediction model, three major steps were conducted - i) initial model development including input variable selection, ii) model optimization, and iii) performance evaluation. Result: Eight meaningful input variables were selected in the initial model development such as outdoor temperature, outdoor humidity, indoor temperature, cooling load of the previous cycle, supply air temperature of AHU, condenser fluid temperature, condenser fluid pressure, and refrigerant evaporation temperature. The initial model was optimized to have 2 hidden layers with 15 hidden neurons each, 0.3 learning rate, and 0.3 momentum. The optimized model proved its prediction accuracy with stable prediction results.

Experiment of Air-Shower to Reduce Particulate Matter in Apartment Housing (공동주택에서 미세먼지 저감을 위한 에어샤워 성능실험)

  • PARK, JIN CHUL;Chung, Hong Goo
    • Land and Housing Review
    • /
    • v.12 no.2
    • /
    • pp.91-97
    • /
    • 2021
  • High levels of fine dust is an increasing health concern in major cities such as Seoul. To improve the indoor air quality of apartments, this study examined the ability of an air shower system installed in an apartment unit to remove fine dust (as defined by ISO 12103-A2) from various clothing items of building occupants entering their apartment. Results of the experiment indicate that an air shower system is effective in removing final dust from clothing after one pass through the system. The fine dust removal efficiency for various clothing items was 74% for a dress suit, 70.6% for hiking clothes, 63.3% for knit-wear, 50.5% for a cotton t-shirt, and 38.8% for a coat. Fine dust removal efficiency increased with a second and third pass through the air shower system by an average of 9.1 and 13.9 percentage points respectively compared to a single pass through the system.

Indoor distribution characteristics of airborne bacteria in pig buildings as influenced by season and housing type

  • Kim, Ki Youn;Ko, Han Jong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.5
    • /
    • pp.742-747
    • /
    • 2019
  • Objective: A concentration of airborne bacteria generated from swine houses is recognized to be relatively higher than other work places and it is essential to optimally manage it to prevent farmers' respiratory diseases. This study was conducted to assess the distribution characteristics of airborne bacteria in swine houses located at South Korea. Methods: A total 27 pig buildings of the enclosed type operated with mechanical ventilation system by a side wall fan and deep-pit manure system with slats were surveyed. Air samples were collected at 1.0 m above the middle floor in pig housing room. A six-stage viable particulate cascade impactor was used to identify the distribution of the sizes of particles in diameter. Results: Seasonal mean levels of airborne bacteria in the housing rooms of gestation/farrowing pigs, nursery pigs and growing/fattening pigs were 3,428(${\pm}1,244$) colony forming unit $(cfu)/m^3$, $8,325({\pm}3,209)cfu/m$, and $13,254({\pm}6,108)cfu/m^3$ for spring; $9,824({\pm}2,157)cfu/m^3$, $18,254({\pm}5,166)cfu/m^3$, and $24,088({\pm}9,274)cfu/m^3$ for summer; $1,707({\pm}957)cfu/m^3$, $4,258({\pm}1,438)cfu/m^3$, and $8,254({\pm}2,416)cfu/m^3$ for autumn; and $2,322({\pm}1,352)cfu/m^3$, $6,124({\pm}1,527)cfu/m^3$ and $12,470({\pm}4,869)cfu/m^3$ for winter, respectively. Conclusion: Concentrations of airborne bacteria according to pig housing type were highest in growing/fattening housing room followed by nursery housing room and gestation/farrowing housing room. In terms of seasonal aspect, the pig building showed the highest levels of airborne bacteria in summer followed by spring, winter and autumn. The respirable airborne bacteria which are ranged between 0.6 and $4.7{\mu}m$ accounted for approximately 60% compared to total airborne bacteria regardless of pig housing type.

Investigations on the emergency operation status of existing medical facilities to prepare for emerging infectious diseases in the post-COVID-19 era (포스트 코로나 시대 신종 감염병 대비를 위한 기존 의료시설의 비상시 운영사례 조사 및 분석)

  • Lee, Sejin;Lee, Wonseok;Kim, Eunseok;Yeo, Myoungsouk
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.29 no.1
    • /
    • pp.43-51
    • /
    • 2023
  • Purpose: To accommodate the increasing number of patients during the COVID-19 pandemic, numerous portable HEPA filter units (PHUs) were installed in the general wards of existing medical facilities(EMFs) to convert them into emergency conversion facilities (ECFs). The purpose of this study was to build a dataset in preparation for emerging infectious diseases in the post-COVID-19 era by analyzing the construction and operation of ECFs. Methods: Field investigations were conducted during ECF operation periods based on the analysis of heating, ventilation, and air conditioning (HAVC) system design documents for six ECFs across Korea. Interviews were conducted with facility managers during the field investigations. Results: When constructing an ECF within an EMF, the installation status and characteristics of the existing system should be considered. Field investigations and verifications of the operation of HAVC systems must be conducted beforehand for smooth ECF operations. If heating and cooling are required with indoor air circulation type equipment in an ECF zone, the implementation of a heating and cooling method that can satisfy the comfort requirements of the occupants while minimizing cross-contamination is essential. When using PHUs that do not meet the performance standards required by medical equipment, the noise level resulting from such equipment operation must be evaluated and improved. Implications: For EMFs, various guidelines that can be referred to for the construction and operation of ECFs must be developed to prepare for emerging infectious diseases in the future.

Wireless LAN-based Vehicle Location Estimation in GPS Shading Environment (GPS 음영 환경에서 무선랜 기반 차량 위치 추정 연구)

  • Lee, Donghun;Min, Kyungin;Kim, Jungha
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.1
    • /
    • pp.94-106
    • /
    • 2020
  • Recently, the radio navigation method utilizing the GPS(Global Positioning System) satellite information is widely used as the method to measure the position of objects. As GPS applications become wider and fields based on various positioning information emerge, new methods for achieving higher accuracy are required. In the case of autonomous vehicles, the INS(Inertial Navigation System) using the IMU(Inertial Measurement Unit), and the DR(Dead Reckoning) algorithm using the in-vehicle sensor, are used for the purpose of preventing degradation of accuracy of the GPS and to measure the position in the shadow area. However, these positioning methods have many elements of problems due not only to the existence of various shaded areas such as building areas that are continually enlarged, tunnels, underground parking lots and but also to the limitations of accumulation-based location estimation methods that increase in error over time. In this paper, an efficient positioning method in a large underground parking space using Fingerprint method is proposed by placing the AP(Access Points) and directional antennas in the form of four anchors using WLAN, a popular means of wireless communication, for positioning the vehicle in the GPS shadow area. The proposed method is proved to be able to produce unchanged positioning results even in an environment where parked vehicles are moved as time passes.

A Study on the Application of Design Components of 3D Greenery System for Eco-Friendly Indoor and Outdoor Space of Buildings (건축물 내외부의 친환경 구성을 위한 입체녹화의 부문별 디자인 적용요소에 관한 연구)

  • Shin, Kyung-Sun;Kim, Won-Pil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.275-284
    • /
    • 2017
  • As the 3D Greenery system is known to improve the urban environment, it works as new alternative for eco-friendly building and warrants further study for application to the domestic field. This study aimed to apply the design components for eco-friendly composition by investigating the spatial characteristics of the 3D Greenery System reflected in interior and exterior of buildings and to analyze the organization and design elements of domestic and foreign cases. The results showed that instances of the Greenery System tended to be a large scale and high-density development in order to expand various exterior spaces. Although its early forms were often found in such public facilities as exhibition and education purpose, cases of multi-unit dwelling have been growing. Allowing apartment residents to prefer intimate space by providing various such spaces for residential units and offering independent green spaces would induce diverse residents' lifestyles rather than monotonous design. The analysis also indicated that community space composed of various outdoor spaces and atmosphere would change life patterns of multi-housing and establish a real neighborhood through social interaction. Moreover, further investigation of the design patterns of outdoor space arrangement is needed since the Greenery system actively reflects the environmental characteristics of building sites and clearly shows a tendency to utilize natural terrain and slope in building shapes.

Analysis of Heat Emission from Hot Water Pipe for Greenhouse Heating System Design (온실 난방시스템 설계를 위한 온수난방배관의 방열량 분석)

  • Shin, Hyun-Ho;Nam, Sang-Woon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.204-211
    • /
    • 2019
  • The purpose of this study is to provide basic data for setting environmental design standards for domestic greenhouses. We conducted experiments on thermal environment measurement at two commercial greenhouses where hot water heating system is adopted. We analyzed heat transfer characteristics of hot water heating pipes and heat emission per unit length of heating pipes was presented. The average air temperature in two greenhouses was controlled to $16.3^{\circ}C$ and $14.6^{\circ}C$ during the experiment, respectively. The average water temperature in heating pipes was $52.3^{\circ}C$ and $45.0^{\circ}C$, respectively. Experimental results showed that natural convection heat transfer coefficient of heating pipe surface was in the range of $5.71{\sim}7.49W/m^2^{\circ}C$. When the flow rate in heating pipe was 0.5m/s or more, temperature difference between hot water and pipe surface was not large. Based on this, overall heat transfer coefficient of heating pipe was derived as form of laminar natural convection heat transfer coefficient in the horizontal cylinder. By modifying the equation of overall heat transfer coefficient, a formula for calculating the heat emission per unit length of hot water heating pipe was developed, which uses pipe size and temperature difference between hot water and indoor air as input variables. The results of this study were compared with domestic and foreign data, and it was found to be closest to JGHA data. The data of NAAS, BALLS and ASHRAE were judged to be too large. Therefore, in order to set up environmental design standards for domestic greenhouses, it is necessary to fully examine those data through further experiments.

A study on a power plant using Dye-sensitized solar cells in low light environments (저조도 환경에서의 염료감응형 태양전지를 활용한 발전소자에 관한 연구)

  • Kim, Sun-Geum;Baek, Sung-June
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.267-272
    • /
    • 2021
  • Recently, attention has been focused on renewable energy and carbon neutrality to resolve fossil energy depletion and environmental problems. In addition, high-rise urban buildings and an increase in building energy are rapidly increasing. There are many restrictions on installing solar power in urban areas. In addition, as buildings become taller, a lot of low-light environments in which shade is formed occur. Therefore, in this study, we intend to develop a power plant capable of generating electric power in an outdoor low-light environment and indoor lighting environment. The power plant in a low-light environment used a dye-sensitized solar cell. A unit cell and a 20cm×20cm module were manufactured, and the electrical characteristics of the power plant were measured using light sources of LED, halogen lamp, and 3-wavelength lamp. The photoelectric conversion efficiency of the unit cell was 17.2%, 1.28%, 19,2% for each LED, halogen lamp, and 3-wavelength lamp, and the photoelectric conversion efficiency of the 20cm×20cm module was 10.9%, 8.7%, and 11.8%, respectively. In addition, the maximum power value of the module was 13.1mW, 15.7 mW, and 14.2 mW for each light source, respectively, confirming the possibility of power generation in a low-light environment

Analysis of Temperature Changes in Greenhouses with Recirculated Water Curtain System (순환식 수막하우스의 수온에 따른 플라스틱 온실 내 온도변화 분석)

  • Kim, Hyung-Kweon;Jeon, Jong-Gil;Paek, Yee;Pyo, Hee-Young;Jeong, Jae-Woan;Kim, Yong-Cheol
    • Journal of Bio-Environment Control
    • /
    • v.24 no.2
    • /
    • pp.93-99
    • /
    • 2015
  • The purpose of this study was to determine the appropriate temperature for water curtain in greenhouses equipped with recirculated water curtain system. The study analyzed the changes in air temperature in non-heated greenhouses for strawberry cultivation based on outdoor temperature, water curtain temperature and night time. Three greenhouse units were used for this study: The first unit was assigned as a control (no water curtain system), two other greenhouses were equipped with recirculated water curtain system with water curtain temperatures of $10^{\circ}C$ and $15^{\circ}C$, respectively. Analysis showed that the indoor temperatures were directly correlated with the outdoor temperature in all experimental greenhouses. Heat insulating effect of $15^{\circ}C$ water curtain was increased by $1.3^{\circ}C$ compared to that in $10^{\circ}C$ water curtain system. The $15^{\circ}C$ water curtain treatment showed the highest average temperature and less temperature variation in comparison with control and $10^{\circ}C$ water curtain treatment. To maintain indoor temperature at $5^{\circ}C$, water curtain temperature of $10^{\circ}C$ was suitable when outdoor minimum and average temperatures were -1.3 and $1.5^{\circ}C$, and water curtain temperature of $15^{\circ}C$ was suitable when outdoor minimum and average temperatures were -4.7 and $-0.2^{\circ}C$, respectively. The highest temperature in greenhouses according to measurements in different periods of night time was observed after sunset (18:30-20:30), and the lowest temperature before sunrise (05:00-07:00). Water curtain maintained a target indoor temperature by acting as a layer of heat transfer insulator which decreased heat loss from greenhouses. Therefore, water temperature in recirculating water curtain systems should be determined by considering outdoor temperatures, changes in temperature at different periods of night time, and cultivated crop.

Distribution and Management of Spatial Dose Rate in Neuro Angio Room (두개부 혈관조영실에서 공간산란선량의 분포와 관리)

  • Lee, Mi-Hwa;Jung, Hong-Ryang;Lim, Cheong-Hwan;Hong, Dong-Hee;Kim, Ki-Jeong;Kim, Sang-Hyun
    • Journal of Digital Convergence
    • /
    • v.12 no.4
    • /
    • pp.427-435
    • /
    • 2014
  • This study is performed in the intervention unit, during interventional procedures and in accordance with the direction and distance during the exposure indoor space is to measure the dose. I was classified at an angle of $45^{\circ}$ counterclockwise from the phantom. Seven(A, B, C, D, E, F, G) were classified as direction. Length was measured from the center of the phantom. Each direction 50cm, 100cm, 150cm, 200cm were classified. I was analyzed by measuring of frontal, lateral, Bi-plan fluoroscopic Spatial dose rate in all 28 points. Measured dose was the highest at 50cm and over 200cm, dose was rapidly decreasing as increased distance. Dose was different more than nine times depending on the distance and direction, Installation of shielding wall can reduce exposure about 84.52% to 93.54%.