• 제목/요약/키워드: Indoor Thermal & Air Environment

검색결과 242건 처리시간 0.027초

근미래 친환경 건축분야 엔지니어에게 필요한 역량에 대한 델파이 연구 (A Delphi Study on Competencies of Future Green Architectural Engineer)

  • 강소연;김태연;이정우
    • 공학교육연구
    • /
    • 제21권3호
    • /
    • pp.56-65
    • /
    • 2018
  • With rapid advance of technologies including information and communication technologies, jobs are evolving faster than ever. Architectural engineering is no exception in this regard, and the green architectural engineering is emerging fast as a promising new field. In this study, a Delphi study of expert architectural engineers are conducted to find out (1) near future prospects of the field, (2) near future emerging jobs, (3) competencies needed for these jobs, and (4) educational content necessary to build these competencies with regards to the green architectural engineering. Initial Delphi survey consisting of open-ended questions in the above four areas were conducted and came out with 65 items after duplicate removal and semantic refinements. Further refinements via second and third wave of Delphi results into 40 items that the 13 architectural engineering experts may largely agree upon as future prospects with regards to the green architectural engineering. Findings indicate that it is expected that the demand for green architectural engineering and needs for automatic energy control system increase. Also, collaborations with other fields is becoming more and more important in green architectural engineering. The professional work management skills such as knowledge convergence, problem solving, collaboration skills, and creativity linking components from various related areas seem to also be on the increasing need. Near future ready critical skills are found to be the building environment control techniques (thermal, light, sound, and air), the data processing techniques like data mining, energy monitoring, and the control and utilization of environmental analysis software. Experts also agree on new curriculum for green building architecture to be developed with more of converging subjects across disciplines for future ready professional skills and experiences. Major topics to be covered in the near future includes building environment studies, building energy management, energy reduction systems, indoor air quality, global environment and natural phenomena, and machinery and electrical facility. Architectural engineering community should be concerned with building up the competencies identified in this Delphi preparing for fast advancing future.

실내 온열환경 쾌적 제어를 위한 단순 PMV 회귀모델의 적용에 관한 시뮬레이션 연구 (A Study on the Application of Simulation-based Simplified PMV Regression Model for Indoor Thermal Comfort Control)

  • 김상훈;윤성준;정광섭
    • 에너지공학
    • /
    • 제24권1호
    • /
    • pp.69-77
    • /
    • 2015
  • 본 연구에서는 보정된 모델링 건물을 대상으로 PMV 변수에 대한 데이터베이스를 구축하였고, 다중회귀분석을 통하여 PMV 회귀모델을 도출하였다. PMV 회귀모델은 민감도 및 데이터 분석을 통하여 단순화하여 단순 PMV 회귀모델을 제시하였다. 단순 PMV 회귀모델과 Fanger PMV 모델에 대한 MAE 및 RMSE 검증을 통하여 단순 PMV 회귀모델이 Fanger PMV 모델을 대체할 수 있는 것으로 분석되었다. EnergyPlus의 EMS(Energy Management System)를 이용하여 보정된 모델링 건물에 PMV 회귀모델 제어를 적용하였다. 단순 PMV 회귀모델과 Fanger PMV 모델 제어의 온열 쾌적도를 비교한 결과, 두 제어 모두 공조기간 동안 약 90% 이상이 온열쾌적 범위를 만족하였고, 온열 쾌적 제어의 특징인 설정 PMV를 만족하는 설정온도에 의하여 제어되는 것으로 나타났다.

신규 고열 위험 업종 선정을 위한 우선순위 및 온열 위험 평가 (Prioritizing for Selection of New High-heat Risk Industries and Thermal Risk Assessment)

  • 신새미;이혜민;기노성;박정민;변상훈;김성호
    • 한국산업보건학회지
    • /
    • 제33권2호
    • /
    • pp.230-246
    • /
    • 2023
  • Objectives: The climate crisis has arrived and heat-related illnesses are increasing. It is necessary to discover new high-heat risk industries and understand the environment . It is also necessary to prioritize risks of industries that have not been included in the management target to date. The study was intended to monitor and evaluate the thermal risk of high-priority workplaces. Methods: A prioritization method was developed based on five factors: occurrence of and death due to heat-related illnesses, work environment monitoring, indoor work rate, small heat source, and limited heat dissipation. it, was applied to industrial accidents caused by heat-related illnesses. Wet bulb temperature index and apparent temperature were measured in July and August at 24 workplaces in seven industries and assessed for thermal risk. Results: The wet bulb temperature index was in the range of 23.8~31.9℃, and exposure limits were exceeded in the growing of crops, food services activities and accommodation, and building construction. The apparent temperature was in the range of 26.8~36.7℃, and exceeded the temperature standard for issuing heatwave warnings in growing of crops, food services activities and accommodation, warehousing, welding, and building construction. Both temperature index in growing of crops and building construction were higher than the outside air temperature. Conclusions: In the workplace, risks in industries that have not be controlled and recognized through existing systems was identified. it is necessary to provide break times according to the work-rest time ratio required during dangerous time period.

온실내 근권부의 지중냉각부하 추정 (Estimation of Soil Cooling Load in the Root Zone of Greenhouses)

  • 남상운
    • 생물환경조절학회지
    • /
    • 제11권4호
    • /
    • pp.151-156
    • /
    • 2002
  • 지중냉각이나 양액냉각과 같은 근권부 냉각은 뿌리의 활력 증진, 양수분 흡수력의 향상, 작물체온의 강하 및 고온스트레스의 감소 등에 효과가 있는 것으로 알려져 있으며, 또한 온실 전체를 냉방하는것 보다 경제적이다. 따라서 본 연구에서는 지중냉각시스템을 경제적인 고온극복 방법중의 하나로 생각하고, 기술을 체계화하기 위한 시도로 지중냉각시스템의 열전달 특성을 분석하여 냉각부하를 산정하기 위한 실험을 수행하였다. 지중열류 측정자료로부터 힘수비에 따른 토양의 열전도율을 분석하였으며, 함수비 19~36%의 범위에서 열전도율은 0.83~0.96W.m$^{-}$.$^{\circ}C$$^{-}$로 직선적인 증가를 보였다. 일사량, 지표온도 및 기온의 관측치로부터 일사량에 따른 지표온도 상승을 회귀분석한 결과 거의 직선적인 관계를 보였으며, 지표온도는 실내 수평면 일사량 300~800W.m$^{-2}$ 범위에서 작물이 없는 경우 3.5~7.$0^{\circ}C$,작물이 지표면을 거의 덮고 있는 경우 1.0~2.5$^{\circ}C$ 정도 기온보다 상승하는 것으로 나타났다. 실험자료를 이용하여 온실의 설계기온과 냉각설정 지온, 일사량 및 토양의 함수비에 따른 지중냉각시스템의 냉각부하를 구하였다. 실내일사량 300~600W.m$^{-2}$ , 토양함수비 20~40%의 범위에서 기온과 지온의 차이를 1$0^{\circ}C$로 유지하기 위해서는 46~59W.m$^{-2}$ 의 냉각열량이 필요한 것으로 나타났다. 보다 정확한 설계자료의 구축을 위해서는 다양한 조건별 실험을 추가로 수행해야 할 것으로 생각된다.EX>$\mu$$_{r}$′) and the dielectric loss ($\varepsilon$$_{r}$"/$\varepsilon$$_{r}$′) were increased. It was caused that the absorption characteristics of the absorber were improved. The conduction loss and magnetic loss were expected to be occurred together because two matching frequencies were shown with carbon addition. It was confirmed that the matching frequency of the microwave absorber could be controlled by controlling heat-treatment temperatures and carbon additions.ons.tions.加的)으로 되거나 과가황(過加黃)이 될 우려가 있는 제조공정(製造工程)에서는 흔히들 이 방법(方法)을 무시(無視)하고 있다. 여기서 강조(强調)해 두어야 할 것은 항상 제품(製品)의 외부(外部)를 완전(完全)히 가황(加黃)시킬 필요(必要)는 없다는 것이다. 다공성(多孔性)이나 기포생성(氣泡生成)을 조장(助長)하는 불량가황상태(不良加黃狀態)와 표면(表面)에서의 과가황상태간(過加黃狀態間)의 균형(均衡)을 취(取)해 줘야 하는데 물론(勿論) 이때는 가황시간(加黃時間)을 단축(短縮)시켜야 한다는 경제적(經濟的)인 측면(側面)도 아울러 고려(考慮)해야 한다. 이것은 고무기술자(技術者)가 당면(當面)해야할 과제(課題)

공기조화, 냉동 분야의 최근 연구 동향 -2000년 및 2001년 학회지 논문에 대한 종합적 고찰 - (Recent Progress in Air Conditioning and Refrigeration Research -A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2000 and 2001-)

  • 강신형;한화택;조금남;이승복;조형희;김민수
    • 설비공학논문집
    • /
    • 제14권12호
    • /
    • pp.1102-1139
    • /
    • 2002
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 2000 and 2001 has been done. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environment. The conclusions are as follows. (1) Most of fundamental studies on fluid flow were related with heat transportation of facilities. Drop formation and rivulet flow on solid surfaces were interesting topics related with condensation augmentation. Research on micro environment considering flow, heat, humidity was also interesting for comfortable living environment. It can be extended considering biological aspects. Development of fans and blowers of high performance and low noise were continuing topics. Well developed CFD technologies were widely applied for developing facilities and their systems. (2) Most of papers related with heat transfer analysis and heat exchanger shows dealt with convection, evaporation, and channel flow for the design application of heat exchanger. The numerical heat transfer simulation studies have been peformed and reported to show heat transfer characteristics. Experimental as well as numerical studies on heat exchanger were reported, while not many papers are available for the system analysis including heat exchanger. (3) A review of the recent studies on heat pump system shows that performance analysis and control of heat pump have been peformed by various simulations and experiments. The research papers on multi-type heat pump system increased significantly. The studies on heat pipe have been examined experimently for change of working characteristics and strut lure. Research on the phase change has been carried out steadily and operation strategies of encapsulated ice storage tank are reported experimentally in several papers. (4) A review of recent studies on refrigeration/air conditioning system have focused on the system performance and efficiency for new alternative refrigerants. Evaporation and condensation heat transfer characteristics are investigated for tube shapes and new alternative refrigerants. Studies on components of refrigeration/air conditioning system are carried to examine efficiency for various compressors and performance of new expansion devices. In addition to thermophysical properties of refrigerant mixtures, studies on new refrigerants are also carried out, however research works on two-phase flow seemed to be insufficient. (5) A review of the recent studies on absorption cooling system indicates that heat and mass transfer phenomena have been investigated to improve absorber performance. Various experimental data have been presented and several simulation models have been proposed. A review of the recent studies on duct and ventilation shows that ventilation indices have been proposed to quantify the ventilation performance in buildings and tunnels. Main efforts have been focused on the applications of ventilation effectiveness in practice, either numerically using computational fluid dynamics or experimentally using tracer gas techniques. (6) Based on a review of recent studies on indoor thermal environment and building service systems, research issues have mainly focused on many innovative ideas such as underfloor air-conditioning system, personal environmental modules, radiant floor cooling and etc. Also, the new approaches for minimizing energy consumption as well as improving indoor environmental conditions through predictive control of HVAC systems, various activities of building energy management and cost-benefit analysis for economic evaluation were highlighted.

빛환경 및 냉난방환경 기반 광선반 성능평가 연구 (Performance Evaluation of Light-Shelf based on Light Enviorment and Air Conditioner Enviorment)

  • 전강민;이행우;서장후;김용성
    • KIEAE Journal
    • /
    • 제16권5호
    • /
    • pp.47-55
    • /
    • 2016
  • Purpose: As the energy consumed by buildings increases, there is a growing need for studies and technology development to address this issue. One of the solutions to excessive energy use by buildings is the light-shelf, which is a natural lighting system enabling efficient reduction in light energy, and research in this area has been intensive. However, most of the studies about the light-shelf are limited to the light environment, and thus the application of their findings to an actual environment in the form of a design may be problematic. Therefore, the purpose of the present study is to provide fundamental data for light-shelf design by carrying out a light-shelf performance evaluation on the basis of the light environment and the heating and cooling environment. Method: In the present study, a testbed was established to conduct a light-shelf performance evaluation by measuring the electric power consumption of lighting and heating and cooling devices depending on the existence of a light-shelf and its angle. Result: The findings of the present study are as follows: 1) With respect to the uniformity of the indoor light environment amenity, the optimum angle of a light-shelf was found to be $30^{\circ}$ for the summer solstice and the winter solstice. 2) With respect to the reduction of electric power consumption by indoor lighting devices, the optimum light-shelf angle at the summer solstice is $30^{\circ}$, at which time electric power consumption may be reduced by 10.2% in comparison with when no light-shelf is applied. However, at the winter solstice, a light-shelf may increase the energy consumption for lighting in comparison with when no light-shelf is applied, and this should be taken into account in the design of a light-shelf. 3) In terms of reducing the electric power consumption of heating and cooling devices, the optimum angle of a light-shelf was found to be $30^{\circ}$ for the summer solstice, while a light-shelf is inappropriate for the winter solstice since a light-shelf creates shade and thus increases the heating energy consumption. 4) To summarize the findings above, the optimum angle of a light-shelf is $30^{\circ}$ for the summer solstice, but the installation of a light-shelf may in some circumstances increase the energy consumed by lighting devices as well as by heating and cooling devices. Therefore, more studies and technology development may need to be performed to solve the problem of increased energy consumption at the winter solstice.

기상 데이터 산정 기간에 따른 국내의 설계용 외기온도 분석 (Analysis of South Korea Outdoor Design Temperature with respect to Assigned Period of the Weather Data)

  • 남아영;김영일;정광섭
    • 한국지열·수열에너지학회논문집
    • /
    • 제13권2호
    • /
    • pp.1-8
    • /
    • 2017
  • Outdoor design temperature is important for selecting proper capacity of heating and cooling systems of a building to implement indoor thermal comfort and save energy consumption. The purpose of this study is to investigate the change of South Korea outdoor design temperature according to the assigned period. When outdoor design temperature of 8 locations calculated with the latest weather data during 2008~2015 years using ASHRAE Bin method are compared to the standard temperature of Ministry of Land, Infrastructure and Transport which is widely used for designing South Korea air-conditioning system at present, the maximum temperature difference becomes $0.97^{\circ}C$ for cooling, and $1.94^{\circ}C$ for heating. Due to wide outdoor temperature variation, update of outdoor design temperature based on recent weather data is recommended.

농촌 마을회관 이용자의 건강성 지향에 관한 연구 (A Study on the Healthy Orientation of Rural Community Center Users)

  • 김은자;유아현;조한솔;박미정;임창수
    • 한국농촌건축학회논문집
    • /
    • 제21권1호
    • /
    • pp.25-36
    • /
    • 2019
  • This study is a basic study for the planning of rural community center space, which introduced the concept of healthcare. As the rural community center is a place where the elderly in rural areas live mainly during the day, this place is very important place for the healthy life of the rural elderly. We conducted an interview survey for 207 users over 65. The survey was organized with three regions to consider the regional characteristics of the community center users and geographical characteristics. As a result of the analysis of planning elements, the main preferences for indoor and outdoor space elements are planning elements such as safety, air quality, light, and the thermal environment and safety handle, night lights, safety walkway. These preferences should be considered for the more healthy friendly rural community center.

전기자동차용 히트펌프의 열 부하 조건에 따른 캐빈온도 특성 (Characteristic of Cabin Temperature According to Thermal Load Condition of Heat Pump for Electric Vehicle)

  • 박지수;한재영;김성수;유상석
    • 대한기계학회논문집B
    • /
    • 제40권2호
    • /
    • pp.85-91
    • /
    • 2016
  • 내연기관 자동차와 달리 전기자동차는 배터리 폐열이 부족하여 실내 난방을 위해 추가적으로 PTC 히터를 사용하고 있지만 전력소모가 큰 단점이 있다. 최근 이러한 단점을 보완할 수 있는 히트펌프 적용에 관한 연구가 활발히 진행되고 있다. 본 연구에서는 히트펌프의 운전특성 해석을 위해 MATLAB/SIMULINK$^{(R)}$환경에서 R134a 히트펌프 모델과 캐빈 모델을 개발하였다. 모델은 여름과 겨울에서 히트펌프의 작동 특성에 따른 실내 온도변화를 나타낼 수 있으며, 모델 검증은 구성품 수준에서 응축기와 증발기의 용량 비교를 수행하였다. 또한 동일한 냉방조건에서 캐빈온도 변화 비교를 통해 캐빈 모델을 검증하였다. 해석 결과 전동압축기 소비전력은 모든 외기온도 조건에서 PTC 히터 보다 낮은 것으로 나타났다. 또한 영하조건에서 히트펌프의 난방용량이 부족한 현상에 대해 폐열회수를 적용하여 효율적인 난방 작동을 할 수 있는 조건을 분석하였다.

포항과 구미의 대규모 산단지역 대기 중 휘발성 유기화합물 농도 분포 특성에 관한 연구 (Characterization of Atmospheric Concentrations of Volatile Organic Compounds in Industrial Areas of Pohang and Gumi Cities)

  • 백성옥;김수현;김미현
    • Environmental Analysis Health and Toxicology
    • /
    • 제20권2호
    • /
    • pp.167-178
    • /
    • 2005
  • This study was carried out to evaluate the temporal, spatial, and seasonal variations of VOC, and to characterize the VOC concentrations in two large industrial complexes located in Pohang and Gumi cities. Twenty -four hours continuous sampling of selected VOC was made with STS 25 sequential tube samplers and double-bed adsorbent tubes. Air samples were collected every three hour interval for 7 consecutive days in each site during summer and winter. VOC were determined by thermal desorption coupled with GC/MS. A total of 27 VOCs of environmental concern were determined, including aliphatic, aromatic and halides. Generally. concentrations of toxic VOC were higher in Gumi than Pohang, and VOC levels in industrial areas were typically several-fold higher than those in residential areas. The most abundant VOC appeared to be toluene for both cities. However, chlorinated VOC were higher in Gumi than Pohang, while aromatic VOC were more abundant in Pohang than in Gumi. Two cities showed relatively different variations of VOC concentrations within a day. It is likely that traffic related sources are major factors affecting the VOC in Pohang, and industrial solvents usages are important sources in Gumi. These results imply that the occurrence and levels of atmospheric VOC are strongly dependent on the type of industries in each city. Therefore, in order to develop any control strategies or to establish the priority rankings for VOC in large industrial complexes, the type of industries and the occurrence of VOC in the atmosphere should be taken into consideration.