• Title/Summary/Keyword: Indoor Position

Search Result 523, Processing Time 0.032 seconds

A Study on the Realization of Wireless Home Network System Using High-performance Speech Recognition in Variable Position (가변위치 고음성인식 기술을 이용한 무선 홈 네트워크 시스템 구현에 관한 연구)

  • Yoon, Jun-Chul;Choi, Sang-Bang;Park, Chan-Sub;Kim, Se-Yong;Kim, Ki-Man;Kang, Suk-Youb
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.4
    • /
    • pp.991-998
    • /
    • 2010
  • In realization of wireless home network system using speech recognition in indoor voice recognition environment, background noise and reverberation are two main causes of digression in voice recognition system. In this study, the home network system resistant to reverberation and background noise using voice section detection method based on spectral entropy in indoor recognition environment is to be realized. Spectral subtraction can reduce the effect of reverberation and remove noise independent from voice signal by eliminating signal distorted by reverberation in spectrum. For effective spectral subtraction, the correct separation of voice section and silent section should be accompanied and for this, improvement of performance needs to be done, applying to voice section detection method based on entropy. In this study, experimental and indoor environment testing is carried out to figure out command recognition rate in indoor recognition environment. The test result shows that command recognition rate improved in static environment and reverberant room condition, using voice section detection method based on spectral entropy.

Performance of Indoor Positioning using Visible Light Communication System (가시광 통신을 이용한 실내 사용자 단말 탐지 시스템)

  • Park, Young-Sik;Hwang, Yu-Min;Song, Yu-Chan;Kim, Jin-Young
    • Journal of Digital Contents Society
    • /
    • v.15 no.1
    • /
    • pp.129-136
    • /
    • 2014
  • Wi-Fi fingerprinting system is a very popular positioning method used in indoor spaces. The system depends on Wi-Fi Received Signal Strength (RSS) from Access Points (APs). However, the Wi-Fi RSS is changeable by multipath fading effect and interference due to walls, obstacles and people. Therefore, the Wi-Fi fingerprinting system produces low position accuracy. Also, Wi-Fi signals pass through walls. For this reason, the existing system cannot distinguish users' floor. To solve these problems, this paper proposes a LED fingerprinting system for accurate indoor positioning. The proposed system uses a received optical power from LEDs and LED-Identification (LED-ID) instead of the Wi-Fi RSS. In training phase, we record LED fingerprints in database at each place. In serving phase, we adopt a K-Nearest Neighbor (K-NN) algorithm for comparing existing data and new received data of users. We show that our technique performs in terms of CDF by computer simulation results. From simulation results, the proposed system shows that a positioning accuracy is improved by 8.6 % on average.

Analysis of Channel Capacity with Respect to Antenna Separation of an MIMO System in an Indoor Channel Environment (실내 채널 환경에서 MIMO 시스템의 안테나 이격거리에 따른 채널 용량 분석)

  • Kim, Sang-Keun;Oh, Yi-Sok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.11 s.114
    • /
    • pp.1058-1064
    • /
    • 2006
  • In this paper, the channel capacity of a specified wireless indoor multiple-input multiple-output(MIMO) channel is estimated by analyzing spatial characteristics of this channel using the three-dimensional ray tracing method, and a technique for deriving an optimized separation of multi-antenna elements is proposed. At first, the ray paths, the path losses, and the time-delay profile are computed using the three-dimensional ray tracing method in an indoor corridor environment, which has the line of sight(LOS) and non-line of sight(NLOS) regions. The ray tracing method is verified by a comparison between the computation results and the measurements which are obtained with dipole antennas, an amplifier and a network analyzer. Then, an MIMO system is positioned in the indoor channel environment and the ray paths and path losses are computed for four antenna-position combinations and various values of the antenna separation to obtain the channel capacity for the MIMO system. An optimum antenna-separation is derived by averaging the channel capacities of 100 receiver positions with four different antenna combinations.

Vector Calibration for Geomagnetic Field Based Indoor Localization (지자기 기반 실내 위치 추정을 위한 지자기 벡터 보정법)

  • Son, Won Joon;Choi, Lynn
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.3
    • /
    • pp.25-30
    • /
    • 2019
  • Magnetic sensors have the disadvantage that their vector values differ depending on the direction. In this paper, we propose a magnetic vector calibration method for geomagnetic-based indoor localization estimates. The fingerprinting technique used in geomagnetic-based indoor localization the position by matching the magnetic field map and the magnetic sensor value. However, since the moving direction of the current user may be different from the moving direction of the person who creates the magnetic field map at the collection time, the sampled magnetic vector may have different values from the vector values recorded in the field map. This may substantially lower the positioning accuracy. To avoid this problem, the existing studies use only the magnitude of magnetic vector, but this reduces the uniqueness of the fingerprint, which may also degrade the positioning accuracy. In this paper we propose a vector calibration algorithm which can adjust the sampled magnetic vector values to the vector direction of the magnetic field map by using the parametric equation of a circle. This can minimize the inaccuracy caused by the direction mismatch.

A Study on the Proper Illuminance Considering the Task Amenity of the Occupant in the Office Space (사무공간의 재실자의 작업면 쾌적성을 고려한 적정조도 도출)

  • Kim, In-Hye;Kim, Sung-Kyung;Hong, Won-Hwa
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.3
    • /
    • pp.159-167
    • /
    • 2020
  • For modern people who spend most of their time indoors, the indoor environment is very important. The efficiency of work depends on the amenity level of the occupants who use the office space. Therefore, the experiment was conducted to derive the proper illuminance according to the amenity level of the occupants. The experiment was conducted in an office in Chilgok County for 6 days. The illuminance of the indoor was changed every day, the feeling brightness of the occupants was measured every 10 minutes, the eye fatigue was measured every 30 minutes, and the overall illuminance and the work surface illuminance were measured every hour. Experimental results show that the feeling brightness is different depending on the position of the occupants. Also, it was found that the brightness survey preferred by the occupants required more proper illuminance than the brightness. In addition, it is considered that there is a correlation with indoor temperature and humidity as the eye fatigue of occupants. Brightness preference by time of day was analysis from feeling brightness of occupants and preference brightness of occupants, and then it was analyzed like eye fatigue to derive proper illuminance per hour. Based on these results, it can be utilized for improvement of eye amenity existing office space.

A loop closing scheme using UWB based indoor positioning technique (UWB 기반 실내 측위 기술을 활용한 루프 클로징 기법)

  • Hyunwoo You;Jungkyun Lee;Somi Nam;Juyeon Lee;Yoonseo Lee;Minsung Kim;Hong Min
    • Smart Media Journal
    • /
    • v.12 no.4
    • /
    • pp.41-46
    • /
    • 2023
  • UWB is a type of technology used for indoor positioning and is characterized by higher accuracy than RSSI-based schemes. Mobile equipment operating based on ROS can monitor the environment around the equipment using lidar and cameras. When applying the loop closing technique to determine the starting position in this monitoring process, the existing method has a problem of low accuracy because the closing operation occurs only when there are feature points on the image. In this paper, to solve this problem, we designed a system that increases the accuracy of loop closing work by providing location information by mounting a UWB tag on a mobile device. In addition, the accuracy of the UWB-based indoor positioning system was evaluated through experiments, and it was verified that it could be used for loop closing techniques.

Localization using Neural Networks and Push-Pull Estimation based on RSS from AP to Mobile Device (통신기지국과 모바일장치간의 수신신호강도를 기반으로 하는 신경망과 푸쉬-풀 평가를 이용한 위치추정)

  • Cho, Seong-Jin;Lee, Sung-Young
    • The KIPS Transactions:PartD
    • /
    • v.19D no.3
    • /
    • pp.237-246
    • /
    • 2012
  • Although the development of Global Positioning System (GPS) are more and more mature, its accuracy is just acceptable for outdoor positioning, not positioning for the indoor of building and the underpass. For the positioning application area for the indoor of building and the underpass, GPS even cannot achieve that accuracy because of the construction materials while the requirement for accurate positioning in the indoor of building and the underpass, because a space, a person is necessary, may be very small space with several square meters in the indoor of building and the underpass. The Received Signal Strength (RSS) based localization is becoming a good choice especially for the indoor of building and the underpass scenarios where the WiFi signals of IEEE 802.11, Wireless LAN, are available in almost every indoor of building and the underpass. The fundamental requirement of such localization system is to estimate location from Access Point (AP) to mobile device using RSS at a specific location. The Multi-path fading effects in this process make RSS to fluctuate unpredictably, causing uncertainty in localization. To deal with this problem, the combination for the method of Neural Networks and Push-Pull Estimation is applied so that the carried along the devices can learn and make the decision of position using mobile device where it is in the indoor of building and the underpass.

The Design and Implementation of Location Information System using Wireless Fidelity in Indoors (실내에서 Wi-Fi를 이용한 위치 정보 시스템의 설계 및 구현)

  • Kwon, O-Byung;Kim, Kyeong-Su
    • Journal of Digital Convergence
    • /
    • v.11 no.4
    • /
    • pp.243-249
    • /
    • 2013
  • In this paper, GPS(Global Positioning System) that can be used outdoors and GPS(Global Positioning System) is not available for indoor Wi-Fi(Wireless Fidelity) using the Android-based location information system has been designed and implemented. Pedestrians in a room in order to estimate the location of the pedestrian's position, regardless of need to obtain the absolute position and relative position, depending on the movement of pedestrians in a row it is necessary to estimate. In order to estimate the initial position of the pedestrian Wi-Fi Fingerprinting was used. Most existing Wi-Fi Fingerprinting position error small WKNN(Weighted K Nearest Neighbor) algorithm shortcoming EWKNN (Enhanced Weighted K Nearest Neighbor) using the algorithm raised the accuracy of the position. And in order to estimate the relative position of the pedestrian, the smart phone is mounted on the IMUInertial Measurement Unit) because the use did not require additional equipment.

A group identification algorithm for distinguishing close contacts in ships

  • Lin, Qian-Feng;Son, Joo-Young
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2020.11a
    • /
    • pp.75-77
    • /
    • 2020
  • There was an outbreak of COVID-19 on the Diamond Princess cruise ship. Distinguishing close contacts is the important problem to be addressed. Close contacts mean people who stays with the patients of disease like COVID-19 over a period of time. The passenger position on board can be obtained by indoor positioning technology. The feature of close contacts is similar location with COVID-19 patients. Therefore, this paper proposed the idea of distinguishing close contacts on board based on DBSCAN algorithm.

  • PDF

Pose Selection of a Mobile Manipulator for a Pick and Place Task (집기-놓기 작업을 위한 이동 머니퓰레이터의 자세 선정)

  • Cho, Kyoung-Rae
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.4
    • /
    • pp.344-352
    • /
    • 2011
  • A mobile manipulator is a system with a robotic manipulator mounted on top of a mobile base. It has both indoor and outdoor applications for transporting or transferring materials. When a user gives commands, they are usually at high levels such as "move the object to the table," or "tidy the room." By intelligently decomposing these complex commands into several subtasks, the mobile manipulator can perform the tasks with a greater efficiency. One of the crucial subtasks for these commands is the pick-and-place task. For the mobile manipulator, selection of a good base position and orientation is essential to accomplishing this task. This paper presents an algorithm that determines one of the position and orientation of a mobile manipulator in order to complete the pick-and-place task without human intervention. Its effectiveness are shown for a mobile manipulator with 9 degrees-of-freedom in simulation.