• Title/Summary/Keyword: Indoor Location System

Search Result 448, Processing Time 0.025 seconds

GIS Application for 1-1-9 Caller Location Information System (GIS를 이용한 신고자 위치표시 시스템 개발)

  • Hahm, Chang-Hahk;Jeong, Jae-Hu;Ryu, Joong-Hi;Kim, Eung-Nam
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.8 no.1 s.15
    • /
    • pp.97-103
    • /
    • 2000
  • The main purpose of 1-1-9 Caller Location Information System is to identify and display the precise location of emergency incidents such as natural or man - made fires, medical emergencies and accidents. The state - of- the - art technologies such as Am (Automatic Number Identification), GIS(Geographical Information System) and GPS (Global Positioning System) were applied and integrated in the system for efficient and effective location identification. It displays a radius of 25M, 50M and 100M on the map after location identification. The system can also provide the shortest path to an incident location from a fire station or a fire engine. In case of a fire breakout in or near a building, the attribute information of the building, called a building attribute card, is displayed along with the map location. The system then matches the information with the fire situation and sends an alert to a responsible fire station by phone or fax in order to help promptly react to the problem. An attribute card includes the critical information of a premise such as building's location, number of stories, floor plans, capacity, construction history, indoor fire detection and Prevention facilities, etc.

  • PDF

Development of Localization using Artificial and Natural Landmark for Indoor Mobile Robots (실내 이동 로봇을 위한 자연 표식과 인공 표식을 혼합한 위치 추정 기법 개발)

  • Ahn, Joonwoo;Shin, Seho;Park, Jaeheung
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.4
    • /
    • pp.205-216
    • /
    • 2016
  • The localization of the robot is one of the most important factors of navigating mobile robots. The use of featured information of landmarks is one approach to estimate the location of the robot. This approach can be classified into two categories: the natural-landmark-based and artificial-landmark-based approach. Natural landmarks are suitable for any environment, but they may not be sufficient for localization in the less featured or dynamic environment. On the other hand, artificial landmarks may generate shaded areas due to space constraints. In order to improve these disadvantages, this paper presents a novel development of the localization system by using artificial and natural-landmarks-based approach on a topological map. The proposed localization system can recognize far or near landmarks without any distortion by using landmark tracking system based on top-view image transform. The camera is rotated by distance of landmark. The experiment shows a result of performing position recognition without shading section by applying the proposed system with a small number of artificial landmarks in the mobile robot.

Implementation of Indoor Positioning System using Raspberry Pi and RSSI Scanner (라즈베리파이와 RSSI 스캐너를 활용한 실내측위 시스템 구현)

  • Lee, Sung-jin;Choi, Jun-hyeong;Choi, Byeong-yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.640-642
    • /
    • 2021
  • In order to collect a lot of data clearly and efficiently, it is essential to know the locations of the current facilities and analyze the movement data. The current location collection technology can collect data using a GPS (Global Positioning System) sensor, but in the case of GPS, it has strong straightness and low diffraction and reflectivity, making it difficult to position indoors. It is impossible to measure the distance between the server and the client because the signal sensitivity cannot be received. This paper implements an indoor positioning system using beacons and scanners in Raspberry Pi 3 B+. It controls Advertise Mode and Connection Mode at the same time using the scanner algorithm.

  • PDF

A Study on the Suggestion of a Lighting Control System Applying General Illumination and Technology of User and Location Awareness (전반조명 기반 사용자 및 위치인식기술 적용 조명제어 시스템 제안 연구)

  • Park, Juil;Lee, Haengwoo;Seo, Janghoo;Kim, Yongseong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.10
    • /
    • pp.527-536
    • /
    • 2015
  • Studies for the reduction of lighting energy have been done using technologies such as user and location awareness. However, the focus of current research on location-based lighting control has been on energy reduction, which can lead to other issues including an imbalance in indoor illumination. This study proposes a lighting control system applying general illumination and technology for user and location awareness. The proposed lighting control system reduced lighting energy by 72.1%, 66.5% and 62.3% for 1, 2 and 3 users, respectively, compared to the On/Off lighting control system. This lighting control system causes an increase in lighting energy of 35.8% and 10.9% for 1 and 2 users compared to the lighting control system with user and location awareness, while a reduction of 9.4% was seen for 3 users. This means that the proposed system provides more effective energy reduction for a room with multiple occupants as it is based on the general lighting control scheme. The lighting control system applying general illumination and technology of user and location awareness improved the uniformity factor by 32.0%, 39.4% and 33.4% for 1, 2 and 3 users, respectively.

Analysis of the Applicability of Aruco Marker-Based Worker Localization in Construction Sites (Aruco 마커 기반 건설 현장 작업자 위치 파악 적용성 분석)

  • Choi, Tae-Hung;Kim, Do-Keun;Jang, Se-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.205-206
    • /
    • 2023
  • This paper presents a new method for indoor localization track workers in construction sites. While GPS and NTRIP are effective for outdoor positioning, they are less accurate when used indoors. To address this issue, the proposed method utilizes Aruco markers to measure the distance between workers and the markers. By collecting data values, the location of each worker can be determined in real-time with high accuracy. This approach has the potential to enhance work efficiency and safety at construction sites, as it provides more precise indoor positioning compared to conventional methods, leading to improved work efficiency.

  • PDF

Localization using Neural Networks and Push-Pull Estimation based on RSS from AP to Mobile Device (통신기지국과 모바일장치간의 수신신호강도를 기반으로 하는 신경망과 푸쉬-풀 평가를 이용한 위치추정)

  • Cho, Seong-Jin;Lee, Sung-Young
    • The KIPS Transactions:PartD
    • /
    • v.19D no.3
    • /
    • pp.237-246
    • /
    • 2012
  • Although the development of Global Positioning System (GPS) are more and more mature, its accuracy is just acceptable for outdoor positioning, not positioning for the indoor of building and the underpass. For the positioning application area for the indoor of building and the underpass, GPS even cannot achieve that accuracy because of the construction materials while the requirement for accurate positioning in the indoor of building and the underpass, because a space, a person is necessary, may be very small space with several square meters in the indoor of building and the underpass. The Received Signal Strength (RSS) based localization is becoming a good choice especially for the indoor of building and the underpass scenarios where the WiFi signals of IEEE 802.11, Wireless LAN, are available in almost every indoor of building and the underpass. The fundamental requirement of such localization system is to estimate location from Access Point (AP) to mobile device using RSS at a specific location. The Multi-path fading effects in this process make RSS to fluctuate unpredictably, causing uncertainty in localization. To deal with this problem, the combination for the method of Neural Networks and Push-Pull Estimation is applied so that the carried along the devices can learn and make the decision of position using mobile device where it is in the indoor of building and the underpass.

The Indoor Position Detection Method using a Single Camera and a Parabolic Mirror (볼록 거울 및 단일 카메라를 이용한 실내에서의 전 방향 위치 검출 방법)

  • Kim, Jee-Hong;Kim, Hee-Sun;Lee, Chang-Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.2
    • /
    • pp.161-167
    • /
    • 2008
  • This article describes the methods of a decision of the location which user points to move by an optical device like a laser pointer and a moving to that location. Using a conic mirror and CCD camera sensor, a robot observes a spot of user wanted point among an initiative, computes the location and azimuth and moves to that position. This system offers the brief data to a processor with simple devices. In these reason, we can reduce the time of a calculation to process of images and find the target by user point for carrying a robot. User points a laser spot on a point to be moved so that this sensor system in the robot, detecting the laser spot point with a conic mirror, laid on the robot, showing a camera. The camera is attached on the robot upper body and fixed parallel to the ground and the conic mirror.

A Study on the Development of an Indoor Positioning Support System for Providing Landmark Information (랜드마크 정보 제공을 위한 실내위치측위 지원 시스템 구축에 관한 연구)

  • Ock-Woo NAM;Chang-Soo SHIN;Yun-Soo CHOI
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.4
    • /
    • pp.130-144
    • /
    • 2023
  • Recently, various positioning technologies are being researched based on signal-based positioning and image-based positioning to obtain accurate indoor location information. Among these, various studies are being conducted on image positioning technology that determines the location of a mobile terminal using images acquired through cameras and sensor data collected as needed. For video-based positioning, a method of determining indoor location is used by matching mobile terminal photos with virtual landmark images, and for this purpose, it is necessary to build indoor spatial information about various landmarks such as billboards, vending machines, and ATM machines. In order to construct indoor spatial information on various landmarks, a panoramic image in the form of a road view and accurate 3D survey results were obtained through c 13 buildings of the Electronics and Telecommunications Research Institute(ETRI). When comparing the 3D total station final result and the terrestrial lidar panoramic image coordinates, the coordinates and distance performance were obtained within about 0.10m, confirming that accurate landmark construction for use in indoor positioning was possible. By utilizing these terrestrial lidar achievements to perform 3D landmark modeling necessary for image positioning, it was possible to more quickly model landmark information that could not be constructed only through 3D modeling using existing as-built drawings.

High-precision positioning system using a database of the environment, position correction algorithm (정밀도가 높은 위치 측정 시스템의 환경 데이터베이스를 이용한 위치 보정 알고리즘)

  • Lee, Jeong-Joo;Kang, Dong-Jo;Park, Hyun-Ju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.8
    • /
    • pp.1779-1788
    • /
    • 2012
  • Recently, demands of application services in consideration of interior environment according to the stream of times, Ubiquitous. In case of interior location-based service, WLAN is now mostly used. But it is largely affected by environmental changes. To solve this problem, lots of studies on UWB are underway. The reason why studies on UWB are much made lies in that it is not much affected by environment changes owing to radio wave characteristics. So this study suggests the location correction algorithm which derives values with less influence of environment and high accuracy and corrects with more accurate location information using Ubisense system based on UWB technologies. The location correction algorithm suggested is one made after constructing environment database and use it to estimate more accurate location from the location measuring system in a high position.

Realistic Seeing Through Method and Device Through Adaptive Registration between Building Space and Telepresence Indoor Environment

  • Lee, Jun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.1
    • /
    • pp.101-107
    • /
    • 2020
  • We propose a realistic seeing through visualization methods in mixed reality environment. When a user wants to see specific location beyond a wall in indoor environment. The proposed system recognizes and registers the selected area using environment modelling and feature-based tracking. Then the selected area is diminished and the specific location is visualized in real-time. With the proposed seeing through methods, a user can understand spatial relationship of the building and can easily find the target location. We conducted a user study comparing the seeing through method to conventional indoor navigation service in order to investigate the potential of the proposed seeing through method. The proposed seeing through method was evaluated in navigation time in comparison with conventional approach. The proposed method enable users to navigate target locations 30% faster than the conventional approach.