• Title/Summary/Keyword: Indoor Localization system

Search Result 226, Processing Time 0.03 seconds

Location Error Compensation in indoor environment by using MST-based Topology Control (MST 토폴로지를 이용한 실내 환경에서의 위치측정에러의 보상기법)

  • Jeon, Jong-Hyeok;Kwon, Young-Goo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.8
    • /
    • pp.1926-1933
    • /
    • 2013
  • Many localization algorithms have been proposed for Wireless Sensor Networks (WSNs). The IEEE 802.15.4a-based location-aware-system can provide precise ranging distance between two mobile nodes. The mobile nodes can obtain their exact locations by using accurate ranging distances. However, the indoor environments contain various obstacles which cause non-line-of-sight (NLOS) conditions. In NLOS condition, the IEEE 802.15.4a-based location-aware system has a large scale location error. To solve the problem, we propose location error compensation in indoor environment by using MST-based topology control. Experimental and simulation results show that the proposed algorithm improves location accuracy in NLOS conditions.

The Development of Users' Interesting Points Analyses Method and POI Recommendation System for Indoor Location Based Services (실내 위치기반 서비스를 위한 사용자 관심지점 탐사 기법과 POI추천 시스템의 구현)

  • Kim, Beoum-Su;Lee, Yeon;Kim, Gyeong-Bae;Bae, Hae-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.5
    • /
    • pp.81-91
    • /
    • 2012
  • Recently, as location-determination of indoor users is available with the development of variety of localization techniques for indoor location-based service, diverse indoor location based services are proposed. Accordingly, it is necessary to develop individualized POI recommendation service for recommending most interested points of large-scale commercial spaces such as shopping malls and departments. For POI recommendation, it is necessary to study the method for exploring location which users are interested in location with considering user's mobility in large-scale commercial spaces. In this paper, we proposed POI recommendation system with the definition of users' as 'Stay point' in order to consider users' various interest locations. By using the proposed algorithm, we analysis users' Stay points, then mining the users' visiting pattern to finished the proposed. POI Recommendation System. The proposed system decreased data more dramatically than that of using user's entire mobility data and usage of memory.

Localization of 3D Spatial Information from Single Omni-Directional Image (단일 전방향 영상을 이용한 공간 정보의 측정)

  • Kang Hyun-Deok;Jo Kang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.7
    • /
    • pp.686-692
    • /
    • 2006
  • This paper shows the calculation of 3D geometric information such as height, direction and distance under the constraints of a catadioptric camera system. The catadioptric camera system satisfies the single viewpoint constraints adopting hyperboloidal mirror. To calculate the 3D information with a single omni-directional image, the points are assumed to lie in perpendicular to the ground. The infinite plane is also detected as a circle from the structure of the mirror and camera. The analytic experiments verify the correctness of theory using real images taken in indoor environments like rooms or corridors. Thus, the experimental results show the applicability to calculate the 3D geometric information using single omni-directional images.

Indoor Localization for Mobile Robot using Extended Kalman Filter (확장 칼만 필터를 이용한 로봇의 실내위치측정)

  • Kim, Jung-Min;Kim, Youn-Tae;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.706-711
    • /
    • 2008
  • This paper is presented an accurate localization scheme for mobile robots based on the fusion of ultrasonic satellite (U-SAT) with inertial navigation system (INS), i.e., sensor fusion. Our aim is to achieve enough accuracy less than 100 mm. The INS consist of a yaw gyro, two wheel-encoders. And the U-SAT consist of four transmitters, a receiver. Besides the localization method in this paper fuse these in an extended Kalman filter. The performance of the localization is verified by simulation and two actual data(straight, curve) gathered from about 0.5 m/s of driving actual driving data. localization methods used are general sensor fusion and sensor fusion through Kalman filter using data from INS. Through the simulation and actual data studies, the experiment show the effectiveness of the proposed method for autonomous mobile robots.

Indoor Location Tracking System using 2.4GHz Wireless Channel Model (2.4GHz 채널을 이용한 실내 위치 인식 시스템)

  • Jung, Kyung-Kwon;Choi, Jung-Yeon;Chung, Sung-Boo;Park, Jin-Woo;Eom, Ki-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.846-849
    • /
    • 2008
  • In recent years there has been growing interest in wireless sensor networks (WSNs) for a variety of indoor applications. In this paper, we present the RSSI-based localization in indoor environments. In order to evaluate the relationship between distance and RSSI, the log-normal path loss shadowing model is used. By tagging users with a sensor node and deploying a number of nodes at fixed position in the building, the RSSI can be used to determine the position of tagged user. This system operates by recording and processing signal strength information at the base stations. It combines Euclidean distance technique with signal strength matrix obtained during real-time measurement to determine the location of user. The experimental results presented the ability of this system to estimate user's location with a accuracy.

  • PDF

An indoor localization system for estimating human trajectories using a foot-mounted IMU sensor and step classification based on LSTM

  • Ts.Tengis;B.Dorj;T.Amartuvshin;Ch.Batchuluun;G.Bat-Erdene;Kh.Temuulen
    • International journal of advanced smart convergence
    • /
    • v.13 no.1
    • /
    • pp.37-47
    • /
    • 2024
  • This study presents the results of designing a system that determines the location of a person in an indoor environment based on a single IMU sensor attached to the tip of a person's shoe in an area where GPS signals are inaccessible. By adjusting for human footfall, it is possible to accurately determine human location and trajectory by correcting errors originating from the Inertial Measurement Unit (IMU) combined with advanced machine learning algorithms. Although there are various techniques to identify stepping, our study successfully recognized stepping with 98.7% accuracy using an artificial intelligence model known as Long Short-Term Memory (LSTM). Drawing upon the enhancements in our methodology, this article demonstrates a novel technique for generating a 200-meter trajectory, achieving a level of precision marked by a 2.1% error margin. Indoor pedestrian navigation systems, relying on inertial measurement units attached to the feet, have shown encouraging outcomes.

A Study on Self-Localization of Home Wellness Robot Using Collaboration of Trilateration and Triangulation (삼변·삼각 측량 협업을 이용한 홈 웰니스 로봇의 자기위치인식에 관한 연구)

  • Lee, Byoungsu;Kim, Seungwoo
    • Journal of IKEEE
    • /
    • v.18 no.1
    • /
    • pp.57-63
    • /
    • 2014
  • This paper is to technically implement the sensing platform for Home-Wellness Robot. The self-Localization of indoor mobile robot is very important for the sophisticated trajectory control. In this paper, the robot's self-localization algorithm is designed by RF sensor network and fuzzy inference. The robot realizes its self-localization, using RFID sensors, through the collaboration algorithm which uses fuzzy inference for combining the strengths of triangulation and triangulation. For the triangulation self-Localization, RSSI is implemented. TOA method is used for realizing the triangulation self-localization. The final improved position is, through fuzzy inference, made by the fusion algorithm of the resultant coordinates from trilateration and triangulation in real time. In this paper, good performance of the proposed self-localization algorithm is confirmed through the results of a variety of experiments in the base of RFID sensor network and reader system.

KAI-R: KAIST Railroad Indoor Navigation System for Subway Station (지하철 역사에서 실내 내비게이션 서비스를 위한 KAI-R 시스템)

  • Lee, Gunwoo;Ko, Daegweon;Kim, Hyun;Han, Dongsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.5
    • /
    • pp.156-170
    • /
    • 2019
  • Rapid increasing of smartphones has changed people's lifestyles, and location-based services are providing a platform to provide various conveniences in accordance with these changes. In particular, it may provide convenience to many users if location-based services are provided in an indoor area such as subway station. However, it is still a difficult task to ensure accurate positioning result for guiding routes in subway stations. This study proposes a KAI-R system that allows all processes to be performed in one system for indoor navigation in subway stations. The proposed system includes a new pedestrian step detection method for continuous positioning along with an improved fusion positioning algorithm.

Installation and Operation of a GPS Jammer Localization System (GPS 전파위협원 위치추적 시스템 구축 및 초기 운용)

  • Lim, Deok Won;Lim, Soon;Chun, Sebum;Heo, Moon Beom
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.524-533
    • /
    • 2015
  • In this paper, results for an installation and operation of a GPS jammer localization system were analyzed. The jammer localization system was developed by Korea Aerospace Research Institute and it consists of 4 Receiver Stations, a Central Tracking Station, and a Monitoring Station. The system was installed at Incheon International Airport in November 2014; each Receiver Stations were installed at rooftop of buildings apart from 4km, and the Central Tracking Station and a Monitoring Station were installed at indoor. Results of the operation can be monitored through web-browser in real-time, Korea Aerospace Research Institute and Incheon International Airport Corporation are continuously monitoring them. So far, there is no jamming signal which affects GPS receivers around the airport, however, some abnormal signals were frequently received at Receiver Stations. Therefore, the characteristics of those signals were also analyzed in this paper.

Indoor Positioning System Using Fingerprinting Technique (Fingerprinting기법을 이용한 실내 위치측위시스템)

  • Nam, Doo-Hee;Han, Ho-Yeon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • According to the ubiquitous trend, the needs for the context based application service have been increased. These services take on Location Based Service which is based on the current location of users. It is widely used that localization techniques use GPS or ground wave and more efficient and accurate methods have been studied. Recently, not only services which targeted outdoor but also services which targeted indoor, for example home services and facility guidance of the building come into the spotlight. In case of the outdoor positioning area, COTH (Commercial Off-The-Shelf) has been released and used but relatively it doesn't produce an outcome in the indoor positioning area. Therefore, this paper Proposes the indoor positioning technique using wireless LAN (Local Area Network) which is one of the widely used wireless communication technique. It analyzes the typical WLAN location positioning methodology has been studied and their advantage and disadvantage also suggests how to design and implement the specific WLAN positioning system. In addition, it suggests new methods that progress the accuracy of the existing systems and improve the efficient computation.

  • PDF