DOI QR코드

DOI QR Code

Indoor Localization for Mobile Robot using Extended Kalman Filter

확장 칼만 필터를 이용한 로봇의 실내위치측정

  • Published : 2008.10.25

Abstract

This paper is presented an accurate localization scheme for mobile robots based on the fusion of ultrasonic satellite (U-SAT) with inertial navigation system (INS), i.e., sensor fusion. Our aim is to achieve enough accuracy less than 100 mm. The INS consist of a yaw gyro, two wheel-encoders. And the U-SAT consist of four transmitters, a receiver. Besides the localization method in this paper fuse these in an extended Kalman filter. The performance of the localization is verified by simulation and two actual data(straight, curve) gathered from about 0.5 m/s of driving actual driving data. localization methods used are general sensor fusion and sensor fusion through Kalman filter using data from INS. Through the simulation and actual data studies, the experiment show the effectiveness of the proposed method for autonomous mobile robots.

본 논문에서는 Inertial Navigation System (INS)와 Ultrasonic-SATellite (U-SAT)의 센서융합을 기반으로 100mm 이하의 정밀위치측정 시스템을 보여준다. INS는 자이로와 두 개의 엔코더로 구성되고, U-SAT는 네 개의 송신기와 한 개의 수신기로 구성하였다. 구성된 센서들은 정밀한 정밀위치측정을 위하여 Extended Kalman Filler (EKF)를 통해 센서들을 융합하였다. 위치측정의 성능을 증명하기 위해 본 논문에서는 로봇이 0.5 m/s의 속도로 주행한 실제 데이터(직진, 곡선)와 시뮬레이션을 통한 실험을 하였으며, 실험에 사용된 위치측정방법은 일반적인 센서융합과 INS 데이터만을 칼만 필터에 이용한 센서융합을 비교하였다. 시뮬레이션과 실제 데이터를 통해 실험한 결과, INS 데이터만을 칼만 필터에 이용한 센서융합이 더 정밀함을 확인할 수 있었다.

Keywords

References

  1. Barshan, B. and H. F. Durrant-Whyte, "Inertial Navigation Systems for Mobile Robots." IEEE Transactions on Robotics and Automation, vol. 11, no. 3, pp. 328-342, 1995 https://doi.org/10.1109/70.388775
  2. Solda, Erik, Worst, Rainer, Hertzberg and Joachim, "Poor Man's Gyro-based Localization," Proceedings of the 5th IFAC/EURON Symposium on Intelligent Autonomous Vehicles IAV, 2004
  3. Hassel, M. and J. Hertzberg, "Sensor Fusion for Localizing a Mobile Robot Outside of Buildings," Proceedings of the 9th International Symposium on Intelligent Robotic Systems. pp. 477-484, 2001
  4. J. Z. Sasiadek, P. Hartana, P., "Sensor fusion for navigation of an autonomous unmanned aerial vehicle," IEEE Robotics and Automation, vol. 4, pp. 4029-4034, 2004
  5. W. Li, and H. Leung, "Constrained unscented Kalman filter based fusion of GPS/INS/digital map for vehicle localization," IEEE Intelligent Transportation Systems, pp. 1362 -1367, 2003
  6. F. Figueroa and A. Mahajan, "A robust navigation system for autonomous vehicles using ultrasonics," Control Eng. Practice, vol. 2, no. 1, pp. 49-59, 1994 https://doi.org/10.1016/0967-0661(94)90573-8
  7. Sebastian Thrun, Maren Bennewitz, Wolfram Burgard, Armin B. Cremers, Frank Dellaert, and Dieter Fox, "MINERVA: A Second-Generation Museum Tour-Guide Robot," in Proceeding of the IEEE Conference on Robotics and Automation, Detroit, Michigan, USA, pp. 1999-2005, 1999
  8. R. Siegwart, K.O. Arras, S. Bouabadallah, D. Burnier, G. Froidevaux, X. Greppin, B. Jensen, A. Lorotte, L. Mayor, M. Meisser, R. Philippsen, R. Piguet, G. Ramel, G. Terrien, and N. Tomatis, "Robox at Expo.02: Alarge-scale installation of personal robots," Robotics and Autonomous Systems, vol. 42, no. 3-4, pp. 203-222, 2003 https://doi.org/10.1016/S0921-8890(02)00376-7

Cited by

  1. UKF Localization of a Mobile Robot in an Indoor Environment and Performance Evaluation vol.25, pp.4, 2015, https://doi.org/10.5391/JKIIS.2015.25.4.361
  2. Performance analysis of dynamic positioning system with loss of propulsion power of T/S NARA vol.54, pp.2, 2018, https://doi.org/10.3796/KSFOT.2018.54.2.181