• Title/Summary/Keyword: Indoor/Outdoor concentration

Search Result 187, Processing Time 0.022 seconds

The Study on Concentration of PM10 and Heavy Metal in Public Schools at Chung-Nam Area (충남 지역 일부 학교의 PM10과 중금속 농도에 관한 연구)

  • Son, Bu-Soon;Song, Mi-Ra;Kim, Jung-Duk;Cho, Tae-Jin;Yang, Won-Ho;Chung, Tae-Woong
    • Journal of Environmental Science International
    • /
    • v.17 no.9
    • /
    • pp.1005-1013
    • /
    • 2008
  • In this study, in order to analyze the air quality of the indoor environments of schools, we measured the indoor, outdoor and personal exposure concentration level of $PM_{10}$ for 40 classrooms(20 old, 20 new) in chungnam area from June 22 to July 19 and from November 21 to December 30, 2003. 1. Old classrooms contained more dust than new classrooms; the average of respirable dust is $43.27\;{\mu}g/m^3$ for new classrooms while $53.38\;{\mu}g/m^3$ for old one. The exposure concentration level of respirable dust in new classrooms were in summer higher outdoors than indoors. The values were indoors $46.71\;{\mu}g/m^3$, outdoors $50.46\;{\mu}g/m^3$, and personal $41.62\;{\mu}g/m^3$. Meanwhile in winter indoors had a higher concentration level than outdoors, the values being indoors $39.11\;{\mu}g/m^3$, outdoors $34.86\;{\mu}g/m^3$, and personal $49.01\;{\mu}g/m^3$. 2. Cr concentration level within dust was slightly higher in summer indoors ($101.50{\pm}32.10\;ng/m^3$) and outdoors ($100.89{\pm}35.18\;ng/m^3$) than winter indoors ($85.80{\pm}48.95\;ng/m^3$) and outdoors ($74.43{\pm}38.93\;ng/m^3$), but in personal concentration level, winter was higher. The results of this research show insufficient understanding of health risks from indoor air pollution, and shows possible health problems to students from school indoor air pollution. As such, a logical and systematic education program for students about the importance of indoor air quality should be carried out. Also the results of $PM_{10}$ concentration level measurements emphasize the need for regular measurements of indoor / outdoor and personal concentration level. New classrooms in particular needs to be used after measuring pollutants and safety, and requires installation of a ventilation device in all classrooms to improve air quality.

Quantitative Analysis of CO2 Reduction by Door-opening in the Subway Cabin (출입문 개폐에 의한 전동차 객실 CO2 저감효과 분석)

  • Kwon, Soon-Bark;Cho, Young-Min;Park, Duck-Shin;Park, Eun-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.2
    • /
    • pp.153-161
    • /
    • 2008
  • The guidelines for indoor air quality of public transportations such as subway, train and bus was presented by Korean Ministry of Environment last end of year 2006 based on the great consequence of indoor air quality in daily life. Two main parameters, carbon dioxide($CO_2$) and particulate matters smaller than $10\;{\mu}m(PM_{10})$, were selected as index pollutants for the management of indoor air quality. The former pollutant, $CO_2$, is regarded as index of ventilation status and the major source of $CO_2$ in the train or subway is the exhalation of passengers. It is publically perceived that the high $CO_2$ concentration in a crowded subway will be reduced and ventilated with outdoor air by door-opening taken every 2 or 3 minutes when the train stops each station. However, there has not been any scientific proof and quantitative information on the effect of door-opening on the $CO_2$ reduction by ventilation with outdoor air. In this study, $CO_2$ concentration and number of passengers were measured at each station on the 3 lines of Korail metropolitan subway. In order to evaluate the effect of $CO_2$ reduction by door opening, the theoretical approach using the $CO_2$ balance equation was performed. By comparing the predicted data with monitoring one, the optimum $CO_2$ dilution factor was determined. For the first time, it was quantified that about 35% of $CO_2$ concentration in the subway indoor was removed by the door-opening at each station.

An Analysis on Characteristics of the Pollutants and the Real Condition State of the Indoor Air Pollution in Occupied Apartment Units (기존 공동주택의 실내 유해화학물질 오염발생원에 대한 특성 분석)

  • Yoo, Bok-Hee
    • Journal of the Korean housing association
    • /
    • v.21 no.6
    • /
    • pp.11-18
    • /
    • 2010
  • The aims of this study were to grasp the real condition state and clarify the characteristics and influence of pollutants on the indoor air pollution in occupied apartment units. The research method was to measure the pollution levels of indoor air pollution, and investigate characteristics of the pollutants such as the outdoor environment, elapsed time after construction, finished materials, temperature, relative humidity, space extension, purchase with furniture and electric appliances, built-in closets, and method for cleaning the air. And these were made a comparition between industrial and residential area. The VOCs and formaldehyde concentration in indoor air were measured the 6 household in residental area and 5 household in industrial area. In conclusion, the concentration such as benzene, ethylbenzene, toluene, xylene, styrene showed the pollution state within permissible levels, however formaldehyde concentration has need a lot of attention as ever. And it turned out that the influence with reference to emission from building materials on indoor air pollution lessened under 18 months elapsed time after construction.

A study of PM-10 and Heavy Metal characteristics in the air at the each site of a subway station. (지하철역사내 측정위치별 PM-10 및 중금속 농도특성에 관한 연구)

  • Chang Jung-Wook;Cho Jang-Je;Choi Woo-Gun;Park Duk-Sin;Jung Woo-Sung;Kim Tae-Oh
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.389-394
    • /
    • 2003
  • Subway has been used one of major public transportations because of overpopulation and heavy traffic problems in the metropolitan areas. So, the air pollution has been serious. In this study, continuous date of PM-10 (particles with aerodynamic diameter < $10{\mu}m$) and heavy metal concentration measurements for winter, spring and summer. These measurements have been carried out in the outdoor, concourse, platform, tunnel. The study results showed that the average seasonally concentration of PM-10 particles were $141.57{\mu}g/m^3$ in winter. $129.34{\mu}g/m^3$ in spring and $122.73{\mu}g/m^3$. The average concentration of PM-l0 particles at indoor higher than outdoor. The concentration of Fe, Cu, showed the largest peak concentrations during the respective season.

  • PDF

Characteristics of In-cabin PM2.5 Concentration in Seoul Metro Line Number 2 in Autumn (서울시 지하철 2호선의 가을철 객실 PM2.5 농도의 특성)

  • Shin, Hyerin;Jung, Hyunhee;Lee, Kiyoung
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.2
    • /
    • pp.186-191
    • /
    • 2019
  • Objectives: Subway is one of the most common transportation modes in Seoul, Korea. The objectives of this study were to determine characteristics of in-cabin $PM_{2.5}$ concentration in Seoul Metro Line Number 2 and to identify factors of the $PM_{2.5}$ concentration. Methods: In-cabin $PM_{2.5}$ concentrations in Seoul Metro Line Number 2 were measured using real-time monitors and the factors affecting $PM_{2.5}$ concentration in cabin were observed. Linear regression analysis of in-cabin $PM_{2.5}$ concentration and indoor/outdoor (I/O) ratio were performed. Results: In-cabin $PM_{2.5}$ concentration was associated with the in-cabin $PM_{2.5}$ concentration in previous station. In-cabin $PM_{2.5}$ concentration was correlated with ambient $PM_{2.5}$ concentration and associated with underground station with control of the in-cabin $PM_{2.5}$ concentration in previous station. I/O ratio increased as the number of passengers increased and when passing through the underground station with control of I/O ratio in previous station. Conclusion: In-cabin $PM_{2.5}$ concentration was affected by ambient $PM_{2.5}$ concentration. Therefore, management of in-cabin $PM_{2.5}$ concentrations should be based on outdoor air quality.

Exposure Characteristics of Construction Painters to Organic Solvents

  • Park, Hyunhee;Park, Hae Dong;Jang, Jae-Kil
    • Safety and Health at Work
    • /
    • v.7 no.1
    • /
    • pp.63-71
    • /
    • 2016
  • Background: Construction painters have not been studied well in terms of their hazards exposure. The objective of this study was to evaluate the exposure levels of total volatile organic compounds (TVOCs) for painters in the construction industry. Methods: Activity-specific personal air samplings were carried out in three waterproofing activities [polyurethane (PU), asphalt, and cement mortar] and three painting activities (epoxy, oil based, and water based) by using organic-vapor-monitor passive-sampling devices. Gas chromatograph with flame ionization detector could be used for identifying and quantifying individual organic chemicals. The levels of TVOCs, by summing up 15 targeted substances, were expressed in exposure-index (EI) values. Results: As arithmetic means in the order of concentration levels, the EIs of TVOCs in waterproofing works were 10.77, 2.42, 1.78, 1.68, 0.47, 0.07, and none detected (ND) for indoor PU-primer task, outdoor PU-primer task, outdoor PU-resin task, indoor PU-resin task, asphalt-primer task, asphalt-adhesive task, and cement-mortar task, respectively. The highest EI for painting works was 5.61 for indoor epoxyprimer task, followed by indoor epoxy-resin task (2.03), outdoor oil-based-spray-paint task (1.65), outdoor water-based-paint task (0.66), and indoor oil-based-paint task (0.15). Assuming that the operations were carried out continuously for 8 hours without breaks and by using the arithmetic means of EIs for each of the 12 tasks in this study, 58.3% (7 out of 12) exceeded the exposure limit of 100% (EI > 1.0), while 8.3% (1 out of 12) was in 50e100% of exposure limit (0.5 > EI > 1.0), and 4 tasks out of 12 were located in less than 50% of the limit range (EI < 0.5). Conclusion: From this study, we recognized that construction painters are exposed to various solvents, including carcinogens and reproductive toxins, and the levels of TVOC concentration in many of the painting tasks exceeded the exposure limits. Construction workers need to be protected from chemical agents during their painting works by using personal protective devices and/or work practice measures. Additional studies should focus on the exposure assessment of other hazards for construction workers, in order to identify high-risk tasks and to improve hazardous work environments.

Characteristics of indoor air quality in the overground and underground railway stations (지상과 지하역사의 실내공기질 특성과 외기영향 평가)

  • Namgung, Hyeong-Kyu;Song, Ji-Han;Kim, Soo-Yeon;Kim, Hee-Man;Kwon, Soon-Bark
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.17-25
    • /
    • 2016
  • In this study, the air quality of underground and overground railway stations was evaluated focusing on the degree of influence of the outside air quality. The measured components were particulate matter ($PM_{10}$), carbon dioxide ($CO_2$), carbon monoxide (CO), nitrogen dioxide ($NO_2$), formaldehyde (HCHO), ozone ($O_3$), total airborne bacteria (TAB), total volatile organic carbon (TVOC), and Radon (Rn), which are included in the maintenance standards and recommended standards of the Indoor Air Quality Management Act. Also, the indoor/outdoor concentration ratios of $PM_{10}$, $NO_2$, and $O_3$ were calculated to estimate the influence of the outdoor air quality. The concentrations of $PM_{10}$ HCHO, TVOC, $NO_2$, and Rn in the underground stations were found to be higher than those in the overground stations. These results indicate that the (present) generation of contaminants are caused by the indoor source of the underground station. The ozone concentration of the overground stations was higher than that of the underground stations, which indicates that the outdoor ozone concentration influenced that of the overground stations directly. Thus, methods of improving the IAQ should take into consideration the types of contamination.

The Effect on Indoor Air Quality Improvement by Ventilation Rate in Newly Built Apartment (환기량 변화에 따른 신축공동주택의 실내공기질 개선효과 검토)

  • Choi Seok-Yong;Kim Sang-Hee;Yee Jung-Jae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.8
    • /
    • pp.649-655
    • /
    • 2006
  • The recent indoor air quality problem in a newly-built apartment house is resulted from the improvement of airtightness performance and the use of the building material contained harmful chemical substances. As a result, these cause indoor air quality gradually to become worse and the harmful effect on occupant health called Sick House Syndrome. The most effective solution to improve the indoor air quality is to encourage the use of green building material. However, if the house is built with general building material, ventilation with outdoor air is alternative to dilute the pollutant concentration. The purpose of this re-search is to find optimum ventilation time in a newly-built apartment house at which the ventilatoris installed. It is found that the HCHO and toluene concentrations are remarkably decreased with the elapse of ventilation time and the concentration reduction rate is increased with increment of air change rate after one hour after operating the ventilator.

IAQ improvement effect analysis in Dynamic Breathing Building(DBB) (숨쉬는 벽체를 적용한 건물에서의 실내공기질(IAQ) 개선 효과 분석)

  • Park, Yong-Dai;Lee, Jin-Sook;Kang, Eun-Chul;Lee, Euy-Joon
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.748-753
    • /
    • 2008
  • In modern buildings, the air-tightness and insulation for energy saving resulted in degradation of Indoor Air Quality(IAQ). It has brought out new diseases such as New Building Syndrome(NBS) and Sick Building Syndrome(SBS) to the tenants of such buildings. As a result, researches on the Dynamic Breathing Building(DBB) are being undertaken to minimize energy loss as well as to improve IAQ. DBB is a state-of-the-art technology to build channels inside the wall so that air migrates between indoor and outdoor, which improves insulation performance and IAQ. This study attempts to evaluate the improvement of DBB employed in real buildings. As analyzing tools, IAQ improvement and particle degradation while were evaluated while the required indoor ventilation rate was satisfied. DBB were installed in the twin test cells at Korea Institute of Energy Research(KIER). From the test, IAQ was compared with outdoor air base on the concentration of particle matter(PM10). As a results, the concentration of particle dust (PM10) within the breathing walls was reduced by 80% at 0.7 ACH, 67% at 2 ACH, 63% at 3 ACH respectively. As ACH is higher, Dnamic Isulation(DI) and normal wall permit more PM10 particles being infiltrated.

  • PDF

Assessment of Indoor Air Quality of Classroom in School by Means of Source Generation - Case Study (발생원에 따른 일부 학교 교실의 실내공기질 평가 사례연구)

  • Yang Won-Ho;Byeon Jae-Cheol;Kim Young-Hee;Kim Dae-Won;Son Bu-Soon;Lee Jung-Eun
    • Journal of Environmental Science International
    • /
    • v.14 no.10
    • /
    • pp.979-983
    • /
    • 2005
  • Indoor air quality has been addressed as an important atmospheric environmental issue and has caught attention of the public in recent years in Korea. Good indoor air quality in classrooms favour student's learning ability, teacher and staff's productivity according to other studies. In this study, each classroom at four different schools was chosen for comparison of indoor and outdoor air quality by means of source generation types such as new constructed classroom, using of cleaning agents and purchased furniture. Temperature, relative humidity (RH), carbon dioxide $(CO_2)$, formaldehyde (HCHO), total volatile organic compounds (TVOCs) and particulate matter with diameter less than $10{\mu}m\;(PM_{10})$ were monitored at indoor and outdoor locations during lesson. HCHO was found to be the worst among parameters measured in new constructed classroom, HCHO and TVOCs was worst in classroom with new purchased furniture, and TVOCs was worst in classroom cleaned by cleaning agents, Indoor $(CO_2)$ concentrations often exceeded 1500 ppm indicating importance of ventilation. Active activity of students during break time made the $PM_{10}$ concentration higher than a lesson, Improvements and further researches should be carried out considering indoor air quality at schools is of special concern since children and students are susceptible to poor air quality.