• Title/Summary/Keyword: Indole-3-butyric acid

Search Result 89, Processing Time 0.026 seconds

Highly efficient production of transgenic Scoparia dulcis L. mediated by Agrobacterium tumefaciens: plant regeneration via shoot organogenesis

  • Aileni, Mahender;Abbagani, Sadanandam;Zhang, Peng
    • Plant Biotechnology Reports
    • /
    • v.5 no.2
    • /
    • pp.147-156
    • /
    • 2011
  • Efficient Agrobacterium-mediated genetic transformation of Scoparia dulcis L. was developed using Agrobacterium tumefaciens strain LBA4404 harboring the binary vector pCAMBIA1301 with ${\beta}$-glucuronidase (GUS) (uidA) and hygromycin phosphotransferase (hpt) genes. Two-day precultured leaf segments of in vitro shoot culture were found to be suitable for cocultivation with the Agrobacterium strain, and acetosyringone was able to promote the transformation process. After selection on shoot organogenesis medium with appropriate concentrations of hygromycin and carbenicillin, adventitious shoots were developed on elongation medium by twice subculturing under the same selection scheme. The elongated hygromycin-resistant shoots were subsequently rooted on the MS medium supplemented with $1mg\;l^{-1}$ indole-3-butyric acid and $15mg\;l^{-1}$ hygromycin. Successful transformation was confirmed by PCR analysis using uidA- and hpt-specific primers and monitored by histochemical assay for ${\beta}$-GUS activity during shoot organogenesis. Integration of hpt gene into the genome of transgenic plants was also verified by Southern blot analysis. High transformation efficiency at a rate of 54.6% with an average of $3.9{\pm}0.39$ transgenic plantlets per explant was achieved in the present transformation system. It took only 2-3 months from seed germination to positive transformants transplanted to soil. Therefore, an efficient and fast genetic transformation system was developed for S. dulcis using an Agrobacterium-mediated approach and plant regeneration via shoot organogenesis, which provides a useful platform for future genetic engineering studies in this medicinally important plant.

Rapid micropropagation of wild garlic (Allium victorialis var. platyphyllum) by the scooping method

  • Jeong, Mi Jin;Yong, Seong Hyeon;Kim, Do Hyeon;Park, Kwan Been;Kim, Hak Gon;Choi, Pil Son;Choi, Myung Suk
    • Journal of Plant Biotechnology
    • /
    • v.49 no.3
    • /
    • pp.213-221
    • /
    • 2022
  • Wild garlic (Allium victorialis var. platyphyllum, AVVP) is a nontimber forest product used as an edible and medicinal vegetable. AVVP is usually propagated form offspring bulbs but it takes a long time to harvest. Using tissue culture technology could overcome this problem. This study investigated the optimal conditions for shoot multiplication, root growth, and plant growth by scooping AVVP bulbs. AVVP bulbs harvested from Ulleung Island, Korea, the main producer of AVVP, were surface-sterilized and used for in vitro propagation. Shoot multiplication was performed by the scooping method. More than five multiple shoots were induced from scooped tissue in Quoirin and Lepoivre (QL) medium containing plant growth regulators (PGRs); the maximum number of multiple shoots were induced from scooped tissue in QL medium containing 0.45 μM thidiazuron (TDZ) after 16 weeks of culture. Roots were induced directly at the base of the shoots in all treatments. In vitro rooting depended on the type of PGRs, and the best root-inducing treatment was QL medium containing 9.84 μM indole-3-butyric acid (IBA). Plants with in vitro roots were transferred to pots containing artificial soil and successfully acclimatized for 4 weeks. The acclimatized plants showed a survival rate of 80% after 20 weeks and gradually promoted growth depending on the acclimatization period. The results of this study will be of great help to AVVP dissemination through sustainable mass propagation.

In vitro Micropropagation and Root Induction of Pear Genetic Resources

  • Jae-young Song;Jinjoo Bae;Woohyung Lee;Jung-ro Lee;Munsup Yoon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.63-63
    • /
    • 2022
  • Pear (Pyrus spp.) is a typical fruit and grown in the temperate climate regions throughout the world. Development of appropriate methods for in vitro propagation and root induction are important to increase the production rate and plant quality rapidly. This study was conducted to find the most appropriate media conditions for in vitro propagation and rooting of three pear cultivars, 'Barttlett', 'BaeYun No.3' and 'Oharabeni'. In vitro propagation was induced on Murashige and Skoog medium (MS) with 2.0 mg/L N6-benzyladenine (BA) and 0.2 mg/L indole-3-butyric acid (IBA) medium. For root induction of these cultivars, the shoot explants of the propagated plants were cultured on two different media containing 1/2 MS medium containing 0.2 mg/L IBA with 15 g/L Sucrose (Rooting Medium 1, RM1) and 1/4 Linsmaier and Skoog medium (LS) medium containing 1 mg/L IBA and 1 mg/L NAA hormone with 7.5 g/L glucose (Rooting Medium, RM2) and after 2 weeks, the plants on the RM2 medium are transferred on RM1 medium (RM2 condition). After nearly seven weeks, percentage of rooting formation were 22.2% in RM1 and 30% in RM2 conditions for Barttlett and 70% in RM1 and 60% in RM2 conditions for Oharabeni cultivars. No differences in these cultivars were observed between RM1 and RM2 conditions. However, BaeYun No.3 cultivar was observed 0% in RM1 and 72.7% in RM2 conditions. This study will help to propagation and root induction of in vitro plants for various pear cultivars.

  • PDF

Optimization of shoot cultures and bioactive compound accumulation in Rosa rugosa during acclimatization

  • Jang, Hae-Rim;Park, Byung-Jun;Park, Seung-A;Pee, Ok-Ja;Park, So-Young;Paek, Kee-Yoeup
    • Journal of Plant Biotechnology
    • /
    • v.43 no.1
    • /
    • pp.104-109
    • /
    • 2016
  • Rosa rugosa is a medicinal, ornamental, and edible plant native to Eastern Asian countries, including Korea, Japan, and China. The aim of this study was to establish a system for biomass production and secondary metabolite accumulation during in vitro culture and acclimatization of Rosa rugosa. The highest rate of multiple shoot proliferation was achieved with $8.8{\mu}M$ benzyladenine (BA) (83.3%). However, the number of shoots (14.4 per explant) at $4.4{\mu}M$ BA was higher than that at $8.8{\mu}M$ BA. Compared to BA, a combination of thidiazuron (TDZ) and indole butyric acid (IBA) exhibited significantly lower shoot induction, with only 50.0~79.2% and 4.2~16.7% relative shoot formation, respectively. During acclimatization, shoots were sampled every week and their total phenolic contents were analyzed. Among various growth factors, fresh weight showed the most dramatic increase from the 3rd week (88.0 mg/plant) to 4th week (132.7 mg/plant). Total phenolics and flavonoids contents were the highest at $1^{st}$ week of acclimatization. Depending on developmental stages, total phenolics and flavonoids contents were higher in 1-yr-old shoots grown ex vitro than in those of older field-grown or in vitro-grown plants. Amongst different ages of field grown plants, 6-year-old plants, the oldest in this study, showed the lowest content in total phenolics.

Multiple shoot induction and plant regeneration from axillary buds of Magnolia 'Vulcan'

  • Kim, Tae-Dong;Kim, Ji-Ah;Lee, Na-Nyum;Choi, Chang-Ho
    • Journal of Plant Biotechnology
    • /
    • v.47 no.1
    • /
    • pp.40-45
    • /
    • 2020
  • An efficient protocol for multiple shoot induction and plant regeneration from axillary bud culture of Magnolia 'Vulcan' was developed in the present study. Primary shoots were obtained from axillary bud explants cultured on Murashige and Skoog (MS) medium containing 1.0 mg/L 6-benzylaminopurine (BA). To induce multiple shoots effectively, primary shoot tips were cultured on MS medium supplemented with different concentrations of BA and zeatin at 0, 0.2, 0.5, and 1.0 mg/L. Of these treatments, the MS medium with 0.5 mg/L BA resulted in the highest number of shoots per explant with an average value of 5.9, and it produced the greatest shoot height at 4.8 cm after 12 weeks of culturing. In the rooting of in vitro produced shoots, the greatest percentage of explants forming roots (91.3%), number of roots per explant (9.7), and root length (2.8 cm) were obtained in half-strength MS medium supplemented with 6.0 mg/L indole-3-butyric acid (IBA). Regenerated plantlets were successfully acclimatized and hardened off inside the culture room with 87.5% survival rate. Plants were transferred to a greenhouse with a 97.2% survival rate. The highly efficient shoot multiplication and plant regeneration system reported herein can be used for large-scale clonal propagation of valuable Magnolia species or cultivars.

Lateral Bud Suppression and Runner Plants Growth of 'Maehyang' Strawberry as Affected by Application Method and Concentration of IBA (IBA 처리방법과 농도에 따른 딸기 '매향'의 측아 발생 억제와 자묘 생육)

  • Hwang, Hee Sung;Jeong, Hyeon Woo;Lee, Hye Ri;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.29 no.1
    • /
    • pp.80-88
    • /
    • 2020
  • This study was conducted to examine the effect by application method and concentration of the indole-3-butyric acid (IBA), which is auxin-based plant growth regulator, on the growth and runner plants production of strawberry in the greenhouse. The seedlings of strawberry were transplanted in the pot (150 ×135 × 90 mm) filled with coir medium on April 12, 2019. The IBA was applied with a foliar spray or drench as 50, 100, 150, and 200 mg·L-1 (50 mL per plant), respectively. The treatment was started on April 29, 2019. The foliar spray and drench treatment of IBA were repeated at 2-week intervals for 9 weeks from the start date of treatment. At 9 weeks after treatment, the petiole length of mother plants was the shortest in the control. The number of runner plants showed a tendency to decreased in the foliar spray. The number of lateral buds showed a tendency to decreased in the IBA treatment, and the least in the foliar with 100 mg·L-1. There was not significantly difference in the fresh and dry weights of the first and second runner plants. However, in the third runner plants, the fresh and dry weights were the greatest in the drench with 100 mg·L-1. Therefore, when considering the growth of third runner plants and lateral bud suppression, the drench with the 100 mg·L-1 could be better application method and concentration of IBA treatment for growth of the third runner plants and runner plants production of strawberry, and the results can be used as a basic research of plant growth regulator application to save the labor force and enhance the seedling quality in strawberry seedling stage.

Production of Adventitious Ginseng Roots Using Biorectors

  • Yu, Kee-Won;Hahn, Eun-Joo;Paek, Kee-Yoeup
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.4
    • /
    • pp.309-315
    • /
    • 2000
  • Panax ginseng is an important medicinal plant that has been used worldwide for geriatric, tonic, stomachic, and aphrodisiac treatments. Ginsenosides contained in the ginseng root are the main substances having active functions for human body. The price of ginseng is very expensive due to a complex process of cultivation, and the yield of ginseng is limited, which cannot meet the demand of the increasing market. Researchers have applied plant biotechnology to solve the problems but there are still things to be determined towards ginsenoside production by large-scale adventitious root culture. In this experiment, 5 to 20 liter bioreactors were employed to determine optimal conditions for adventitious root culture and ginsenoside production of Panax gineng. Callus was induced from the ginseng root on MS agar medium containing 1.0 mg. $L^{-1}$ 2,4-D and 0.1 mg. $L^{-1}$ kinetin. Then the callus was cultured on MS agar medium supplemented with 2.0 mg. $L^{-1}$ IBA, 0.1 mg. $L^{-1}$ kinetin, and 30 g. $L^{-1}$ to induce adventitious roots. The maximum root growth and ginsenoside production were obtained in 1/2 MS medium. 2.0 mg. $L^{-1}$ naphthalene acetic acid resulted in greater root growth than 2.0 mg $L^{-1}$ indole-3-butyric acid. Ginsenoside content increased with 2.0 mg. $L^{-1}$ benzyl adenin or kinetin. High concentrations of benzyl adenin (above 3.0 mg. $L^{-1}$ ) decreased the adventitious root growth and ginsenoside productivity. N $H_{4}$$^{+}$ inhibited the ginsenoside accumulation, while high concentrations of $K^{+}$, $Mg_{2}$$^{+}$, and $Ca_{2}$$^{+}$ increased it. N $H_{4}$$^{+}$ at 0.5 and 1.0 times of the normal amount in 3/4 SH medium resulted in the greatest biomass increase, but the highest ginsenoside productivity was obtained when N $O_{3}$$^{-}$ was used as the sole nitrogen source in the medium. Most microelements at high concentrations in the medium inhibited the root growth, but high concentrations of MnS $O_4$enhanced the root growth. Root dry weight increased with increasing sucrose concentrations up to 50 g. $L^{-1}$ , but decreased from 70 g $L^{-1}$ Ginsenoside productivity was maximized at the range of 20 to 30 g. $L^{-1}$ sucrose. In the experiment on bioreactor types, cone and balloon types were determined to be favorable for both adventitious root growth and ginsenoside production. Jasmonic acid was effective for increasing ginsenoside contents and Rb group ginsenosides mainly increased. These results could be employed in commercial scale bioreactor cultures of Panax ginseng.x ginseng.

  • PDF

Production of Adventitious Root and Analysis of Effective Components from in vitro Culture of Astragalus membranaceus (기내배양을 통한 황기 부정근의 생산과 유효성분 분석)

  • Hur, Mok;Lee, Dae Young;Lee, Jae Won;An, Tae Jin;Lee, Jeong Hoon;Kim, Young Guk;Cha, Seon Woo;Um, Yurry
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.5
    • /
    • pp.357-362
    • /
    • 2015
  • Background : A series of studies were conducted to optimize adventitious root induction in vitro from explants of Astragalus membranaceus using various nutrient media supplemented with plant hormones. Methods and Results : Levels of active components were analyzed from adventitious roots induced under different media conditions. Among the different media conditions, Murashige and Skoog medium supplemented with $1.0mg{\cdot}{\ell}^{-1}$ indole-3-butyric acid resulted in the greatest adventitious root induction rate. The amount of the major active component of the adventitious roots of Ama1, calycosin-7-O-${\beta}$-D-glucopyranoside was higher than that of other adventitious root samples. Conclusions : These results suggest that the adventitious roots of A. membranaceus could be used for the commercial production of medicines.

Mass Proliferation of Hibiscus hamabo Adventitious Root in an Air-lift Bioreactor, and the Antioxidant and Whitening Activity of the Extract (생물반응기를 이용한 황근 부정근의 대량증식과 추출물의 항산화 및 미백 활성 평가)

  • Lee, Jong-Du;Hyun, Ho Bong;Hyeon, Hyejin;Jang, Eunbi;Ko, Min-Hee;Yoon, Weon-Jong;Ham, Young Min;Jung, Yong-Hwan;Choi, Hwon;O, Eu Gene;Oh, Daeju
    • Korean Journal of Plant Resources
    • /
    • v.35 no.4
    • /
    • pp.435-444
    • /
    • 2022
  • Hibiscus hamabo Sieb. et Zucc. (yellow hibiscus) is a deciduous semi-shrub plant and mainly growing in Jeju Island. This is known the unique wild hibiscus genus and classified as an 2nd grade of endangered plant for Korean Red List. In previous studies, properties of germination, ecological, genetical and salt resistance have been reported. In this study, we investigated mass-proliferated adventitious root using bioreactor, antioxidant and whitening effects to conduct functional ingredients. Yellow hibiscus were collected from Gujwa, Jeju by prior permission and they were introduced by explant type and various medium composition after surface sterilization. As a result, seed response rates were evaluated at range of 51.17~51.83%, in terms of comprehensive efficiency of shoot and root formation. In the case of adventitious root propagation condition was confirmed in half strength Murashige and Skoog medium salts, 30 mg/L sucrose, and 2 mg/L indole-3-butyric acid for 8 weeks in 5,000 mL bioreactor. We also compared between relationship with biomass and secondary metabolites accumulation by total phenolics content, the flavonoid content, DPPH free radical scavenging activity and melanin content. The results indicated that adventitious root mass proliferation, antioxidant and whitening effect could develop value of the high-quality cosmeceutical ingredient and further metabolite studies.

Production of biomass and bioactive compounds from adventitious root cultures of Polygonum multiflorum using air-lift bioreactors (생물반응기를 이용한 적하수오 부정근의 바이오매스와 생리활성물질 대량생산)

  • Lee, Kyung-Ju;Park, Youngki;Kim, Ja-Young;Jeong, Taek-Kyu;Yun, Kyung-Seop;Paek, Kee-Yoeup;Park, So-Young
    • Journal of Plant Biotechnology
    • /
    • v.42 no.1
    • /
    • pp.34-42
    • /
    • 2015
  • This study was conducted to investigate the productivity of biomass and antioxidant compounds in Polygonum multiflorum by culturing explants in air-lift bioreactor containing Murashige and Skoog (MS) medium, by adding different concentrations of auxins [indole-3-butyric acid (IBA) and naphthalene acetic acid (NAA)], sucrose, methyl jasmonate (MeJA), and salicylic acid (SA). Results of this study revealed that the explants culturing on the medium supplemented with $9.84{\mu}M$ IBA and 50 g/L sucrose were observed to have higher productivity of biomass and bioactive compound than other treatments used. Thus, we expect that these results will be helpful for large-scale production of biomass and antioxidant compounds from Polygonum multiflorum.