• Title/Summary/Keyword: Indole-3-Acetic Acid

Search Result 230, Processing Time 0.031 seconds

Isolation and Characterization of Indole-3-acetic acid- and 1-aminocylopropane-1-carboxylyic Acid Deaminase-producing Bacteria Related to Environmental Stress (환경스트레스와 관련된 indole-3-acetic acid 및 1-aminocylopropane-1-carboxylyic acid deaminase 활성을 갖는 박테리아의 분리와 특성 연구)

  • Kim, Hee Sook;Kim, Ji-Youn;Lee, Song Min;Park, Hye-Jung;Lee, Sang-Hyeon;Jang, Jeong Su;Lee, Mun Hyon
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.3
    • /
    • pp.390-400
    • /
    • 2019
  • In this study, strains isolated from soil samples collected from Busan, Changwon, and Jeju Island were examined to verify their abilities of phosphate solubilization and nitrogen fixation, production of indole-3-acetic acid (IAA), siderophore, and 1-aminocylopropane-1-carboxylyic acid (ACC) deaminase in order to select strains that promote plant growth and play a role in biocontrol of pests or pathogens. According to the results of this study, most of the isolated strains were found to have ability of phosphate solubilization, nitrogen fixation, IAA production, siderophore production, and production of ACC deaminase. These isolated strains might help plant growth by directly improving absorption of nutrients essential for phosphate solubilization and nitrogen fixation. In addition, they can promote plant growth and control resistance to plant diseases through extracellular enzyme activity and antifungal activity. In addition, most of the selected strains were found to survive in various environmental conditions such as temperature, salinity, and pH. Therefore, Pseudomonas plecoglossicida ANG14, Pseudarthrobacter equi ANG28, Beijerinckia fluminensis ANG34, and Acinetobacter calcoaceticus ANG35 were finally selected through a comparative advantage analysis to suggest their potential as novel biological agents. Further studies are necessary in order to prove their efficacy as novel biological agents through formulation and optimization of effective microorganisms, their preservation period, and crop cultivation tests.

Enhanced Production of Shikonin by Using Polyurethane-entrapped Lithospermum erythrorhizon Cells (Polyurethane Foam 에 포괄시킨 Lithospermum erythrorhizon 세포에 의한 Shikonin 생산)

  • Taek, Seo-Weon;Liu, Jang-Ryol;Park, Young-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.4
    • /
    • pp.343-348
    • /
    • 1989
  • Production of shikonin derivatives by Lithospermum erythrorhizon cells by using polyurethane foam was invesliigated. Shikonin derivatives were effectively adsorbed mostly by phase distribution to polyurethane matrices and their production increased significantly compared to the suspension culture. The enhanced production of shikonin was probably due to more facilitated cell to cell con-tact and lowered intracellular shikonin concentration, both of which are known to be favorable for plant secondary metabolite production. In order to improve the process productivity, tell culture was conducted under various culture conditions: Of them, Schenk and Hildebrandt medium containing indole-3-acetic acid (1.75mg/ι) and kinetin (0.1mg/ι) was considered most appropriate for shikonin production. Production of shikonin increased about 4.5 times in the Schenk and Hildebrandt medium containing indole-3-acetic acid (1.15mg/ι) and kinetin (0.1mg/ι) when compared to the same medium containing p-chlorophenoxyacetic acid (2.0mg/ι) and kinetin (0.1mg/ι). When poly-urethane was used as the support material, a single-stage system was more preferred to the conventional two-stage culture system in terms of shikonin productivity.

  • PDF

Research Trend about the Development of White Biotech-Based Aromatic Compounds (화이트바이오텍기반 방향족화합물 개발에 관한 연구동향)

  • Lee, Jin-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.4
    • /
    • pp.306-315
    • /
    • 2009
  • Due to the depleting petroleum reserve, recurring energy crisis, and global warming, it is necessary to study the development of white biotech-based aromatic chemical feedstock from renewable biomass for replacing petroleum-based one. In particular, the production of aromatic intermediates and derivatives in biosynthetic pathway of aromatic amino acids from glucose might be replaced by the production of petrochemical-based aromatic chemical feedstock including benzene-derived aromatic compounds. In this review, I briefly described the production technology for hydroquinone, catechol, adipic acid, shikimic acid, gallic acid, pyrogallol, vanillin, p-hydroxycinnamic acid, p-hydroxystyrene, p-hydroxybenzoic acid, indigo, and indole 3-acetic acid using metabolic engineering, bioconversion, and chemical process. The problems and possible solutions regarding development of production technology for competitive white biotech-based aromatic compounds were also discussed.

Physiological effects of indole acetic acid (IAA) on chlorella ellipsoidea (Chlorella의 생리에 미치는 Indole acetic acid의 영향)

  • 채인기
    • Korean Journal of Microbiology
    • /
    • v.10 no.3
    • /
    • pp.117-127
    • /
    • 1972
  • To study the effect of IAA on the growth of Chlorella, the alage wre cultured on the media for six days by bubbling $_{2}$ enriched air under 10K lux at 20-$25^{\circ}C$. The culture media were made by adding a concentration of $10^{-3}$M, $10^{-4}$M, and 0M(as a control) IAA to the standard media. During the period of culture, Chlorella was smapled for the given time of interval and photosynthetic and respiratory activities were measured by Warburg manometer and change of chemical components of Chlorella was determined by spectrophotometry after the Chlorella cell was fractionated by Schmidt-Thannhauser method. 1) Photosynthetic and respiratory activities were enhanced by IAA ; especially the enhancement of respiratory activity was so remarkable. 2) As to the chemical components of Chlorella, carbohydrates and amino acids were reduced a little but phosphate, RNA, DNA, and protein were increased by $10^{-3}$M IAA ; the increase of RNA, in particular, was noticable. 3) The above results suggest that the enhancement of growth of Chlorella, by IAA and ATP induced by respiratory activity accelerated with IAA enhanced RNA synthesis, resulting in an increase of protein synthesis.

  • PDF

Effectcs of Plant Growth Regulators on Growth and Berberine Production in Cell Suspension Cultures of Thalictrum rugosum (Thalictrum rugosum 세포배양에서 식물생장 조절물질이 세포증식 및 Berberine 생산에 미치는 영향)

  • 김동일
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.4
    • /
    • pp.327-330
    • /
    • 1990
  • The effects of various plant growth regulators, both auxins and cytokinins, on cell growth and berberine production were investigated in cell suspension cultures of Thafictrum rugosum. Indole-%-acetic acid (IAA) was found to be the best for berberine production among five examined plant growth regulators and the optimum concentration of IAA was 1 $\mu \textrm M$. The enhancement compared to control 2, 4-dichlorophenoxyacetic acid (2, 4-D) was more than 60%. Simultaneous addition of cytokinins such as kinetin and 6-benzylamiroyurine (BA) was inhibitory.

  • PDF

Development of high tryptophan GM rice and its transcriptome analysis (고 함량 트립토판 생산 GM 벼 개발 및 전사체 분석)

  • Jung, Yu Jin;Nogoy, Franz Marielle;Cho, Yong-Gu;Kang, Kwon Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.42 no.3
    • /
    • pp.186-195
    • /
    • 2015
  • Anthranilate synthase (AS) is a key enzyme in the biosynthesis of tryptophan (Trp), which is the precursor of bioactive metabolites like indole-3-acetic acid and other indole alkaloids. Alpha anthranilate synthase 2 (OsASA2) plays a critical role in the feedback inhibition of tryptophan biosynthesis. In this study, two vectors with single (F124V) and double (S126F/L530D) point mutations of the OsASA2 gene for feedback-insensitive ${\alpha}$ subunit of rice anthranilate synthase were constructed and transformed into wildtype Dongjinbyeo by Agrobacterium-mediated transformation. Transgenic single and double mutant lines were selected as a single copy using TaqMan PCR utilized nos gene probe. To select intergenic lines, the flanking sequence of RB or LB was digested with a BfaI enzyme. Four intergenic lines were selected using a flanking sequence tagged (FST) analysis. Expression in rice (Oryza sativa L.) of the transgenes resulted in the accumulation of tryptophan (Trp), indole-3-acetonitrile (IAN), and indole-3-acetic acid (IAA) in leaves and tryptophan content as a free amino acid in seeds also increased up to 30 times relative to the wildtype. Two homozygous event lines, S-TG1 and D-TG1, were selected for characterization of agronomic traits and metabolite profiling of seeds. Differentially expressed genes (DEGs), related to ion transfer and nutrient supply, were upregulated and DEGs related to co-enzymes that work as functional genes were down regulated. These results suggest that two homozygous event lines may prove effective for the breeding of crops with an increased level of free tryptophan content.

Biofilm Formation and Indole-3-Acetic Acid Production by Two Rhizospheric Unicellular Cyanobacteria

  • Ahmed, Mehboob;Stal, Lucas J.;Hasnain, Shahida
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.8
    • /
    • pp.1015-1025
    • /
    • 2014
  • Microorganisms that live in the rhizosphere play a pivotal role in the functioning and maintenance of soil ecosystems. The study of rhizospheric cyanobacteria has been hampered by the difficulty to culture and maintain them in the laboratory. The present work investigated the production of the plant hormone indole-3-acetic acid (IAA) and the potential of biofilm formation on the rhizoplane of pea plants by two cyanobacterial strains, isolated from rice rhizosphere. The unicellular cyanobacteria Chroococcidiopsis sp. MMG-5 and Synechocystis sp. MMG-8 that were isolated from a rice rhizosphere, were investigated. Production of IAA by Chroococcidiopsis sp. MMG-5 and Synechocystis sp. MMG-8 was measured under experimental conditions (pH and light). The bioactivity of the cyanobacterial auxin was demonstrated through the alteration of the rooting pattern of Pisum sativum seedlings. The increase in the concentration of L-tryptophan and the time that this amino acid was present in the medium resulted in a significant enhancement of the synthesis of IAA (r > 0.900 at p = 0.01). There was also a significant correlation between the concentration of IAA in the supernatant of the cyanobacteria cultures and the root length and number of the pea seedlings. Observations made by confocal laser scanning microscopy revealed the presence of cyanobacteria on the surface of the roots and also provided evidence for the penetration of the cyanobacteria in the endorhizosphere. We show that the synthesis of IAA by Chroococcidiopsis sp. MMG-5 and Synechocystis sp. MMG-8 occurs under different environmental conditions and that the auxin is important for the development of the seedling roots and for establishing an intimate symbiosis between cyanobacteria and host plants.

Identification of the Endogenous IAA Analogues in Pea(Pisum sativum L.) Shoots (백색(白色) 완두(豌豆) 유묘(幼苗)에서 IAA 유도체의 확인(確認))

  • Kim, Jeong-Bong;Park, Ro-Dong;Suh, Yong-Taik;Park, Chang-Kyu
    • Applied Biological Chemistry
    • /
    • v.32 no.2
    • /
    • pp.162-169
    • /
    • 1989
  • Tryptophan, indole-3-acetaldehyde, indole-3-acetic acid(IAA), and indole-3-aldehyde were identified as endogenous IAA analogues in etiolated pea(Pisum sativum L. var. 'Sparkle') shoots, which suggests a metabolic sequence(s) of tryptophan${\rightarrow}$(?)${\rightarrow}$indole-3-acetaldehyde${\rightarrow}$IAA${\rightarrow}$indole-3-aldehyde occurring in pea plants. IAA-rhamnose and IAA-glucose were tentatively confirmed as IAA conjugates.

  • PDF