• Title/Summary/Keyword: Individual genome

Search Result 203, Processing Time 0.025 seconds

Computational Approaches for Structural and Functional Genomics

  • Brenner, Steven-E.
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2000.11a
    • /
    • pp.17-20
    • /
    • 2000
  • Structural genomics aims to provide a good experimental structure or computational model of every tractable protein in a complete genome. Underlying this goal is the immense value of protein structure, especially in permitting recognition of distant evolutionary relationships for proteins whose sequence analysis has failed to find any significant homolog. A considerable fraction of the genes in all sequenced genomes have no known function, and structure determination provides a direct means of revealing homology that may be used to infer their putative molecular function. The solved structures will be similarly useful for elucidating the biochemical or biophysical role of proteins that have been previously ascribed only phenotypic functions. More generally, knowledge of an increasingly complete repertoire of protein structures will aid structure prediction methods, improve understanding of protein structure, and ultimately lend insight into molecular interactions and pathways. We use computational methods to select families whose structures cannot be predicted and which are likely to be amenable to experimental characterization. Methods to be employed included modern sequence analysis and clustering algorithms. A critical component is consultation of the presage database for structural genomics, which records the community's experimental work underway and computational predictions. The protein families are ranked according to several criteria including taxonomic diversity and known functional information. Individual proteins, often homologs from hyperthermophiles, are selected from these families as targets for structure determination. The solved structures are examined for structural similarity to other proteins of known structure. Homologous proteins in sequence databases are computationally modeled, to provide a resource of protein structure models complementing the experimentally solved protein structures.

  • PDF

Development of a Multiplex PCR System for Microsatellite Genotyping of the Sea Cucumber Stichopus japonicus (해삼(Stichopus japonicus)의 microsatellite 유전자형 분석을 위한 multiplex PCR 시스템 개발)

  • Sim, Yong-Teak;Lee, Chul-Sang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.6
    • /
    • pp.806-811
    • /
    • 2017
  • A multiplex PCR system comprising 14 microsatellite markers was developed for genotyping analysis of the sea cucumber Stichopus japonicus. A total of 286 samples were used to evaluate genetic polymorphisms and forensic parameters of the microsatellite loci. In a single PCR reaction, all 14 loci were uniformly amplified and a total of 269 alleles were identified. The AJ19024 locus had the largest number of alleles (46), and its discriminatory power and exclusion power were 0.99 and 0.76, respectively. The fewest alleles (8) were present at the Psj2575 locus, which provided the lowest discriminatory power (0.81) and exclusion power (0.20). The mean number of alleles, mean heterozygosity, mean discrimination power and mean exclusion power per locus were 19.21, 0.70, 0.93, and 0.46, respectively. The combined matching probability for the 14 loci was $9.64{\times}10^{-19}$, and the combined power of exclusion was 0.999995. Thus, the forensic parameters evaluated in the present study demonstrated the utility of our multiplex PCR system for biological tracing methods, such as individual identification and paternity testing, in the sea cucumber.

Genetic Factors, Viral Infection, Other Factors and Liver Cancer: An Update on Current Progress

  • Su, Cheng-Hao;Lin, Yong;Cai, Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.4953-4960
    • /
    • 2013
  • Primary liver cancer is one of the most common cancers at the global level, accounting for half of all cancers in some undeveloped countries. This disease tends to occur in livers damaged through alcohol abuse, or chronic infection with hepatitis B and C, on a background of cirrhosis. Various cancer-causing substances are associated with primary liver cancer, including certain pesticides and such chemicals as vinyl chloride and arsenic. The strong association between HBV infection and liver cancer is well documented in epidemiological studies. It is generally acknowledged that the virus is involved through long term chronic infection, frequently associated with cirrhosis, suggesting a nonspecific mechanism triggered by the immune response. Chronic inflammation of liver, continuous cell death, abnormal cell growth, would increase the occurrence rate of genetic alterations and risk of disease. However, the statistics indicated that only about one fifth of HBV carries would develop HCC in lifetime, suggesting that individual variation in genome would also influence the susceptibility of HCC. The goal of this review is to highlight present level of knowledge on the role of viral infection and genetic variation in the development of liver cancer.

Genetic testing in clinical pediatric practice

  • Yoo, Han Wook
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.3
    • /
    • pp.273-285
    • /
    • 2010
  • Completion of the human genome project has allowed a deeper understanding of molecular pathophysiology and has provided invaluable genomic information for the diagnosis of genetic disorders. Advent of new technologies has lead to an explosion in genetic testing. However, this overwhelming stream of genetic information often misleads physicians and patients into a misguided faith in the power of genetic testing. Moreover, genetic testing raises a number of ethical, legal, and social issues. Diagnostic genetic tests can be divided into three primary but overlapping categories: cytogenetic studies (including routine karyotyping, high-resolution karyotyping, and fluorescent in situ hybridization studies), biochemical tests, and DNA-based diagnostic tests. DNA-based testing has grown rapidly over the past decade and includes preandpostnatal testing for the diagnosis of genetic diseases, testing for carriers of genetic diseases, genetic testing for susceptibility to common non-genetic diseases, and screening for common genetic diseases in a particular population. Theoretically, once a gene's structure, function, and association with a disease are well established, the clinical application of genetic testing should be feasible. However, for routine applications in a clinical setting, such tests must satisfy a number of criteria. These criteria include an acceptable degree of clinical and analytical validity, support of a quality assurance program, possibility of modifying the course of the diagnosed disease with treatment, inclusion of pre-and postnatal genetic counseling, and determination of whether the proposed test satisfies cost-benefit criteria and should replace or complement traditional tests. In the near future, the application of genetic testing to common diseases is expected to expand and will likely be extended to include individual pharmacogenetic assessments.

Serological and virological investigation of pestiviruses in Korean black goats

  • Oem, Jae-Ku;Lee, Eun-Yong;Byun, Jae-Won;Kim, Ha-Young;Kwak, Dong-Mi;Song, Hee-Jong;Jung, Byeong-Yeal
    • Korean Journal of Veterinary Service
    • /
    • v.35 no.2
    • /
    • pp.129-131
    • /
    • 2012
  • Blood samples were collected from 672 goats in 60 farms from five provinces of Korea between November 2009 and August 2011. The prevalence of antibodies to pestiviruses was investigated. The examination for antibodies was performed using an enzyme-linked immunosorbent assay (ELISA) detecting antibodies to the bovine viral diarrhea virus (BVDV) and border disease virus (BDV). All blood samples were screened using reverse transcription-polymerase chain reaction (RT-PCR) with primer pairs specific to common pestivirus genome regions. The observed individual seroprevalence was 1.49% and herd seroprevalence was 11.67%. Also, the specific genomes to pestiviruses were detected in 3 out of the 915 clinical samples (0.45%). Based on the nucleotide sequence data, detected pestiviruses were belonged to two BVDV type-1 and one BVDV type-2. The pestivirus infection has been occurred among Korean black goats. However, our results indicate that the prevalence of pestiviruses in black goats was not significantly higher on farms with cattle.

Recent advances in spatially resolved transcriptomics: challenges and opportunities

  • Lee, Jongwon;Yoo, Minsu;Choi, Jungmin
    • BMB Reports
    • /
    • v.55 no.3
    • /
    • pp.113-124
    • /
    • 2022
  • Single-cell RNA sequencing (scRNA-seq) has greatly advanced our understanding of cellular heterogeneity by profiling individual cell transcriptomes. However, cell dissociation from the tissue structure causes a loss of spatial information, which hinders the identification of intercellular communication networks and global transcriptional patterns present in the tissue architecture. To overcome this limitation, novel transcriptomic platforms that preserve spatial information have been actively developed. Significant achievements in imaging technologies have enabled in situ targeted transcriptomic profiling in single cells at single-molecule resolution. In addition, technologies based on mRNA capture followed by sequencing have made possible profiling of the genome-wide transcriptome at the 55-100 ㎛ resolution. Unfortunately, neither imaging-based technology nor capture-based method elucidates a complete picture of the spatial transcriptome in a tissue. Therefore, addressing specific biological questions requires balancing experimental throughput and spatial resolution, mandating the efforts to develop computational algorithms that are pivotal to circumvent technology-specific limitations. In this review, we focus on the current state-of-the-art spatially resolved transcriptomic technologies, describe their applications in a variety of biological domains, and explore recent discoveries demonstrating their enormous potential in biomedical research. We further highlight novel integrative computational methodologies with other data modalities that provide a framework to derive biological insight into heterogeneous and complex tissue organization.

Systems pharmacology approaches in herbal medicine research: a brief review

  • Lee, Myunggyo;Shin, Hyejin;Park, Musun;Kim, Aeyung;Cha, Seongwon;Lee, Haeseung
    • BMB Reports
    • /
    • v.55 no.9
    • /
    • pp.417-428
    • /
    • 2022
  • Herbal medicine, a multi-component treatment, has been extensively practiced for treating various symptoms and diseases. However, its molecular mechanism of action on the human body is unknown, which impedes the development and application of herbal medicine. To address this, recent studies are increasingly adopting systems pharmacology, which interprets pharmacological effects of drugs from consequences of the interaction networks that drugs might have. Most conventional network-based approaches collect associations of herb-compound, compound-target, and target-disease from individual databases, respectively, and construct an integrated network of herb-compound-target-disease to study the complex mechanisms underlying herbal treatment. More recently, rapid advances in high-throughput omics technology have led numerous studies to exploring gene expression profiles induced by herbal treatments to elicit information on direct associations between herbs and genes at the genome-wide scale. In this review, we summarize key databases and computational methods utilized in systems pharmacology for studying herbal medicine. We also highlight recent studies that identify modes of action or novel indications of herbal medicine by harnessing drug-induced transcriptome data.

Dynamics of Viral and Host 3D Genome Structure upon Infection

  • Meyer J. Friedman;Haram Lee;Young-Chan Kwon;Soohwan Oh
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.12
    • /
    • pp.1515-1526
    • /
    • 2022
  • Eukaryotic chromatin is highly organized in the 3D nuclear space and dynamically regulated in response to environmental stimuli. This genomic organization is arranged in a hierarchical fashion to support various cellular functions, including transcriptional regulation of gene expression. Like other host cellular mechanisms, viral pathogens utilize and modulate host chromatin architecture and its regulatory machinery to control features of their life cycle, such as lytic versus latent status. Combined with previous research focusing on individual loci, recent global genomic studies employing conformational assays coupled with high-throughput sequencing technology have informed models for host and, in some cases, viral 3D chromosomal structure re-organization during infection and the contribution of these alterations to virus-mediated diseases. Here, we review recent discoveries and progress in host and viral chromatin structural dynamics during infection, focusing on a subset of DNA (human herpesviruses and HPV) as well as RNA (HIV, influenza virus and SARS-CoV-2) viruses. An understanding of how host and viral genomic structure affect gene expression in both contexts and ultimately viral pathogenesis can facilitate the development of novel therapeutic strategies.

Precision Medicine in Head and Neck Cancer (두경부암에서 정밀의료)

  • Hye-sung Park;Jin-Hyoung Kang
    • Korean Journal of Head & Neck Oncology
    • /
    • v.39 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • Technological advancement in human genome analysis and ICT (information & communication technologies) brought 'precision medicine' into our clinical practice. Precision medicine is a novel medical approach that provides personalized treatments tailored to each individual by precisely segmenting patient populations, based on robust data including a person's genetic information, disease information, lifestyle information, etc. Precision medicine has a potential to be applied to treating a range of tumors, in addition to non-small cell lung cancer, in which precision oncology has been actively practiced. In this article, we are reviewing precision medicine in head and neck cancer (HNC) with focus on tumor agnostic biomarkers and treatments such as NTRK, MSI-H/dMMR, TMB-H and BRAF V600E, all of which were recently approved by U.S. Food and Drug Administration (FDA).

Transcriptional and Epigenetic Regulation of Context-Dependent Plasticity in T-Helper Lineages

  • Meyer J. Friedman;Haram Lee;June-Yong Lee;Soohwan Oh
    • IMMUNE NETWORK
    • /
    • v.23 no.1
    • /
    • pp.5.1-5.28
    • /
    • 2023
  • Th cell lineage determination and functional specialization are tightly linked to the activation of lineage-determining transcription factors (TFs) that bind cis-regulatory elements. These lineage-determining TFs act in concert with multiple layers of transcriptional regulators to alter the epigenetic landscape, including DNA methylation, histone modification and threedimensional chromosome architecture, in order to facilitate the specific Th gene expression programs that allow for phenotypic diversification. Accumulating evidence indicates that Th cell differentiation is not as rigid as classically held; rather, extensive phenotypic plasticity is an inherent feature of T cell lineages. Recent studies have begun to uncover the epigenetic programs that mechanistically govern T cell subset specification and immunological memory. Advances in next generation sequencing technologies have allowed global transcriptomic and epigenomic interrogation of CD4+ Th cells that extends previous findings focusing on individual loci. In this review, we provide an overview of recent genome-wide insights into the transcriptional and epigenetic regulation of CD4+ T cell-mediated adaptive immunity and discuss the implications for disease as well as immunotherapies.