도시지역에서 가로수는 이산화탄소를 저감하고 녹지 공간을 제공하는 유용한 도시시설물 중의 하나이다. 가로수는 일반적으로 지자체에서 관리되고 있으며 가로수의 위치, 수고, 수관폭 등의 정보를 체계적으로 획득하기 위하여 항공 라이다를 사용하는 것이 효율적이다. 본 연구에서는 항공 라이다 자료에서 추정한 가로수 꼭대기점을 정제하고, 가로수의 영역을 분리하는 방법을 제안하였다. 제안 방법의 검증을 위하여 가로수의 개수, 수고, 수관폭 등을 수치적으로 정확하게 알 수 있는 모의 항공 라이다 자료를 생성하였다. 자료처리 과정은 먼저 개별 가로수의 영역을 구분하기 위하여 지면과 비지면을 구분하는 필터링을 수행하였다. 그리고 나서 비지면점에서 건물 등의 비가로수 정보를 제거하고, 가로수의 꼭대기점을 추정하였다. 가로수의 영역은 추정된 가로수의 꼭대기점과 지면점을 서로 잇는 직선의 교차점을 이용하여 설정하였다. 모의자료를 이용한 실험을 통해 수목의 꼭대기점 추정에서 발생되는 오추정점을 정제하고, 가로수의 영역설정을 통해 수고, 수관폭, 가로수의 위치정보를 획득할 수 있었다.
Lim, Ye Seul;La, Phu Hien;Park, Jong Soo;Lee, Mi Hee;Pyeon, Mu Wook;Kim, Jee-In
한국측량학회지
/
제33권6호
/
pp.605-614
/
2015
Drone imaging, which is more cost-effective and controllable compared to airborne LiDAR, requires a low-cost camera and is used for capturing color images. From the overlapped color images, we produced two high-resolution digital surface models over different test areas. After segmentation, we performed tree identification according to the method proposed by , and computed the tree height and the canopy crown size. Compared with the field measurements, the computed results for the tree height in test area 1 (coniferous trees) were found to be accurate, while the results in test area 2 (deciduous coniferous trees) were found to be underestimated. The RMSE of the tree height was 0.84 m, and the width of the canopy crown was 1.51 m in test area 1. Further, the RMSE of the tree height was 2.45 m, and the width of the canopy crown was 1.53 m in test area 2. The experiment results validated the use of drone images for the extraction of a tree structure.
Urban greenery is an important component of urban environment and is fast gaining prominence especially in the developing countries. The destruction of urban trees has resulted to the degradation of the environment, thus the introduction of green Kumasi project by Kumasi Metropolitan Assembly, Ashanti Region of Ghana. The composition and diversity of urban trees gives rise to adequate management and monitoring, thus an inventory of urban trees of the Metropolis was conducted to document complete information on its density, diversity, composition and distribution. A total tree population of 1,101 was enumerated in the principal roads of the Metropolis. The ten most encountered tree species accounted for 61.04% of all the individual tree populations with Mangifera indica being dominant. The dominant families: Fabaceae, Moraceae and Arecaceae constitute 38.57% of the tree population. Diversity of the tree species was very high. The minimum diversity criteria were met on analysis of the diversity of this population. The proportion of exotic species was high with 65.71% of the trees belonging to the introduced species. It is recommended that greater emphasis should be placed on the planting of indigenous trees in future tree planting exercise.
산림의 효율적인 관리를 위해 최근 원격탐사 기법을 이용하여 산림에 관련된 정보를 추출하려는 노력들이 활발히 이루어지고 있다. 하지만 단일 원격탐사 데이터를 이용하는 경우 수목 인식의 정확도 및 추출되는 정보의 양적인 면에서 많은 한계를 가진다. 본 연구는 최근의 수목모델링을 위한 핵심기술들을 컬러 항공사진과 LiDAR 데이터에 적용하여 국내 환경에서의 수목 모델링을 수행하고, 그 결과를 평가하는데 그 목적을 두고 있다. 대전광역시 내에 존재하는 소규모 산림 지역 중 침엽수만으로 이루어진 단순림을 대상 지역으로 하였다. 컬러항공사진과 LiDAR 데이터를 이용하여 추정된 개체수의 정확도 평가 결과 $R^2$값이 0.77로 나타났다. 수고의 경우 집단 정확도 평가 결과 최근 변화가 일어나지 않은 지역은 측정값과 추정값의 차이가 없는 것으로 나타났고, 개별 정확도 평가의 경우 $R^2$값이 0.83으로 높은 상관도를 보였다.
환경영향평가의 훼손수목량은 온실가스 배출량, 임목폐기물 산정 등 다양한 부분에 활용되는 환경지표이다. 지금까지 훼손수목량은 식생조사표의 임목밀도에 의존하였고, 이에 따른 표본편향으로 훼손수목량 추정의 불확실성이 가중되었다. 훼손수목량 추정의 정확성을 높이려면 전수조사를 대안으로 제시할 수 있으나 불가능한 것이 현실이다. 대안으로 드론영상을 이용한 개별 수목 탐지 방법이 있으며, 이 연구는 개별 수목 탐지 방법론으로 표본조사(방형구법)와 드론영상 분석법으로 추정된 훼손수목량을 전수조사 결과와 비교하였다. 연구 결과 전수조사 기준으로 드론 영상 분석법은 25주 과대추정 하였고 방형구법(평균)은 58주 과대 추정하였다. 그러나 기존 환경영향평가에서 시행하는 방형구법은 방형구의 개수, 방형구의 위치에 따른 표본편향의 영향을 많이 받을 것으로 예상된다.
개별 공시지가 산정에 있어 비교 표준지의 선정은 가장 중요한 작업으로서, 최대한 객관적이고 합리적으로 이루어져야 한다. 그러나 현재 비교표준지를 선정하는 작업은 담당 공무원의 수작업에 의해 이루어지기 때문에 효율성이나 객관성을 보장하기가 어렵다. 본 연구에서는 현행 비교표준지 선정방식을 분석하여 문제를 정의하고 비교표준지 선정 업무의 자동화에 적용가능한 기계학습 알고리즘으로 의사결정트리를 선정하고 비교표준지를 선정하여 규칙을 주제지향적인 데이터베이스를 기반으로 학습하였다. 이렇게 학습된 규칙을 이용하여 비교표준지를 선정하고 그 결과를 평가 분석하여 새로운 비교표준지 선정 방법을 제안하였다.
한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
/
pp.208-212
/
1998
This paper suggests the method to recognize the various defect patterns of cold mill strip using binary decision tree constructed by genetic algorithm automatically. In case of classifying the complex the complex patterns with high similarity like the defect patterns of cold mill strip, the selection of the optimal feature set and the structure of recognizer is important for high recognition rate. In this paper genetic algorithm is used to select a subset of the suitable features at each node in binary decision tree. The feature subset of maximum fitness is chosen and the patterns are classified into two classes by linear decision function. After this process is repeated at each node until all the patterns are classified respectively into individual classes. In this way , binary decision tree classifier is constructed automatically. After construction binary decision tree, the final recognizer is accomplished by the learning process of neural network using a set of standard p tterns at each node. In this paper, binary decision tree classifier is applied to recognition of the defect patterns of cold mill strip and the experimental results are given to show the usefulness of the proposed scheme.
This paper suggests a method to recognize the various defect patterns of a cold mill strip using a binary decision tree automatically constructed by a genetic algorithm(GA). In classifying complex patterns with high similarity like the defect patterns of a cold mill stirp, the selection of an optimal feature set and an appropriate recognizer is important to achieve high recognition rate. In this paper a GA is used to select a subset of the suitable features at each node in the binary decision tree. The feature subset with maximum fitness is chosen and the patterns are classified into two classes using a linear decision function. This process is repeated at each node until all the patterns are classified into individual classes. In this way, the classifier using the binary decision tree is constructed automatically. After constructing the binary decision tree, the final recognizer is accomplished by having neural network learning sits of standard patterns at each node. In this paper, the classifier using the binary decision tree is applied to the recognition of defect patterns of a cold mill strip, and the experimental results are given to demonstrate the usefulness of the proposed scheme.
This study was conducted to selected Korean black raspberry (Rubus coreanus Miq.) for high productivity. The eight major agronomic traits were investigated from 198 clones of the clone bank established in Korea Forest Research Institute, Suwon, Korea. The selection levels based on number of fruit per fructify lateral (NFFL) over 20, and fruit weight (FW) over 1.3g, and yield of individual per fructify lateral (YIFL) over 25g, were applied on 198 clones, resulted in 17 clones selected. The selected superior trees, 17 clones, appeared regional differences for amount of fruiting among 4 different test sites. When number of fruit per fruit petiole (NRFP), fruit weight (FW), yield of individual (YI) and sugar content were satisfied over 20, 1.4g, 6kg and 9.5 brix, respectively, as a select condition, 5 clones were reselected as the superior trees among 17 clones. for 3 years.
본 연구는 금융기관에서의 고객신용평가를 위한 최적의 데이터마이닝 모형을 제안한다. 이를 위해 할부금융시장에서의 고객정보 및 할부진행 과정에 대한 세부 내역을 바탕으로 다계층 퍼셉트론(Multi-Layered Perceptrons:MLP)과 다변량 판별분석(Multivariate Discrimination Analysis : MDA), 그리고 의사결정나무(Decision Tree)를 적용하여 각각의 개별모형을 도출하고 이론 유전자 알고리즘을 이용하여 통합한 최종 모형을 구해 그 결과론 각 단일모형과 비교${\cdot}$분석하였다. 그 견과 유전자 알고리즘을 통해 결합한 통합모형의 성능이 가장 우수한 것으로 나타났다. 이에 본 연구는 기존에 진행되었던 개변모형에 대한 검증은 물론, 단순히 여러 개의 모형을 비교${\cdot}$분석하여 우월한 모형을 평가하는 기존 방법론 상의 한계를 극복하기 위해 각각의 개별모형을 유전자 알고리즘을 통해 통합모형으로 구축하는 하나의 방법론을 제시하였다는데 그 의의가 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.