DOI QR코드

DOI QR Code

A Study of the Integration of Individual Classification Model in Data Mining for the Credit Evaluation

신용평가를 위한 데이터마이닝 분류모형의 통합모형에 관한 연구

  • 김갑식 (대구산업정보대학 인터넷비즈니스과)
  • Published : 2005.04.01

Abstract

This study presents an integrated data mining model for the credit evaluation of the customers of a capital company. Based on customer information and financing processes in capital market, we derived individual models from multi-layered perceptrons(MLP), multivariate discrimination analysis(MDA), and decision tree. Further, the results from the existing models were compared with the results from the integrated model using genetic algorithm. The integrated model presented by this study turned out to be superior to the existing models. This study contributes not only to verifying the existing individual models but also to overcoming the limitations of the existing approaches.

본 연구는 금융기관에서의 고객신용평가를 위한 최적의 데이터마이닝 모형을 제안한다. 이를 위해 할부금융시장에서의 고객정보 및 할부진행 과정에 대한 세부 내역을 바탕으로 다계층 퍼셉트론(Multi-Layered Perceptrons:MLP)과 다변량 판별분석(Multivariate Discrimination Analysis : MDA), 그리고 의사결정나무(Decision Tree)를 적용하여 각각의 개별모형을 도출하고 이론 유전자 알고리즘을 이용하여 통합한 최종 모형을 구해 그 결과론 각 단일모형과 비교${\cdot}$분석하였다. 그 견과 유전자 알고리즘을 통해 결합한 통합모형의 성능이 가장 우수한 것으로 나타났다. 이에 본 연구는 기존에 진행되었던 개변모형에 대한 검증은 물론, 단순히 여러 개의 모형을 비교${\cdot}$분석하여 우월한 모형을 평가하는 기존 방법론 상의 한계를 극복하기 위해 각각의 개별모형을 유전자 알고리즘을 통해 통합모형으로 구축하는 하나의 방법론을 제시하였다는데 그 의의가 있다.

Keywords

References

  1. 김갑식. (2003) '할부금융고객의 신용평가를 위한 데이터마이닝 통합모형구축', 대구가톨릭대학교 대학원 박사학위 논문
  2. 김홍철. (2001). '유전자 알고리즘기반 복수 분류모형 통합에 의한 할부금융고객의 신용예측모형', 대구대학교 대학원 석사학위 논문
  3. 정충영, 최이규. (1998). SPSSWIN을 이용한 통계분석, 서울, 무역경영사
  4. 채서일. (1999). 사회과학 조사방법론, 2판, 서울, 학현사
  5. 최종후, 한상태. (2000). AnsweerTree를 이용한 데이터마이닝 의사결정나무분석, 서울, SPSS 아카데미
  6. Boyle, M., Crook, J. N., Hamilton, R., & Thomas, L. C. (1992). Methods for Credit Scoring Applied to Slow Payers, In Thomas, L. C., Crook, J. N., & Edelman, D. B.(eds.), Credit Scoring and Credit Control, Oxford University Press, Oxford, pp.75-90
  7. Cheng, B., & Titterington, D. M. (1994). 'Neural Networks: A Review from a Statistical Perspective', Statistical Science, 9, pp.2-30 https://doi.org/10.1214/ss/1177010638
  8. Desai, V. S., Convay, D. G., Crook, J. N., & Overstreet, G.A. (1997). 'Credit Scoring Models in the Credit Union Environment Using Neural Networks and Genetic Algorithms', IMA Journal of Mathematics Applied in Business and Industry, 8, pp.323-346
  9. Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Reading, MA
  10. Grablowsky, B. J., & Talley, W. K (1981). 'Probit and Discriminant Functions for Classifying Credit Applicants: A Comparison', Journal of Economics and Business, 33, pp. 254-261
  11. Gupta, Y. P., Gupta, M. C., Kumar, A. K., & Sundram, C. (1995). 'Minimizing Total Intercell and Intracell Moves in Cellular Manufacturing: A Genetic Algorithm Approach', INT J. of Computer Integrated Manufacturing, 8(2), pp. 92-101 https://doi.org/10.1080/09511929508944633
  12. Henley, W. E. (1995). 'Statistical Aspects of Credit Scoring', PhD Thesis, Open University
  13. Holland, J. H. (1975). Adaptation in Natural and Artificial Systems, The University of Michigan Press, Ann Arbor, MI
  14. Hon, K. K. B., & Chi, H. (1994). 'A New Approach of Group Technology Part Families Optimization', Annals of the CIRP, 43(1) https://doi.org/10.1016/S0007-8506(07)62157-X
  15. Imielinski, T., & Mannila, H. (1996). 'A Database Perspective on Knowledge Discovery', Communications of the ACM, 39(11), pp.214-225 https://doi.org/10.1145/240455.240472
  16. Jain, Bharat A., & Nag, Barin N. (1997). 'Performance Evaluation of Neural Network Decision Models', Journal of Management Information Systems, 14(2), Fall, pp.201-216 https://doi.org/10.1080/07421222.1997.11518171
  17. Kim, E., Kim, W., & Lee, Y., (2000). 'Purchase Propensity Prediction of EC Customer by Combining Multiple Classifiers Base on GA', Proceedings of International Conference on Electronic Commerce, pp.274-280
  18. Mangasarian, O. L. (1965). 'Linear and Nonlinear Separation of Patterns by Linear Programming', Operations Research, 13, pp.444-452 https://doi.org/10.1287/opre.13.3.444
  19. Mehta, D. (1968). 'The Formulation of Credit Policy Models', Management Science, 15, pp.30-50 https://doi.org/10.1287/mnsc.15.2.B30
  20. Srinivasan, V., & Kim, Y. H. (1987). 'The Bierman-Hausman Credit Granting Model: A Note', Management Science, 33, pp.1361-1362 https://doi.org/10.1287/mnsc.33.10.1361
  21. Thomas, L. C. (2000). 'A Survey of Credit and Behavioral Scoring: Forecasting Financial Risk of Lending to Consumers', International Journal of Forecasting, 16, pp. 149-172 https://doi.org/10.1016/S0169-2070(00)00034-0
  22. West, D. (2000). 'Neural Network Credit Scoring Models', Computers & Operations Research, 27, pp.1131-1152 https://doi.org/10.1016/S0305-0548(99)00149-5
  23. Wiginton, J. C. (1980). 'A Note on the Comparison of Logit and Discriminant Models of Consumer Credit Behaviour', Journal of Financial and Quantitative Analysis, 15, pp. 757-770 https://doi.org/10.2307/2330408
  24. Wong, B. K., Bodnovich, T. A., & Selvi, Y. (1997). 'Neural Network Applications in Business: A Review and Analysis of the Literature(1988-95)', Decision Support Systems, 19, pp.301- 320 https://doi.org/10.1016/S0167-9236(96)00070-X
  25. Yobas, M. B., Crook, J. N., & Ross, P. (1997). 'Credit Scoring Using Neural and Evolutionary Techniques', Credit Research Centre, University of Edinburgh, Working Paper