• Title/Summary/Keyword: Individual Input Space

Search Result 37, Processing Time 0.033 seconds

Design of Optimized Pattern Recognizer by Means of Fuzzy Neural Networks Based on Individual Input Space (개별 입력 공간 기반 퍼지 뉴럴 네트워크에 의한 최적화된 패턴 인식기 설계)

  • Park, Keon-Jun;Kim, Yong-Kab;Kim, Byun-Gon;Hoang, Geun-Chang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.181-189
    • /
    • 2013
  • In this paper, we introduce the fuzzy neural network based on the individual input space to design the pattern recognizer. The proposed networks configure the network by individually dividing each input space. The premise part of the networks is independently composed of the fuzzy partition of individual input spaces and the consequence part of the networks is represented by polynomial functions. The learning of fuzzy neural networks is realized by adjusting connection weights of the neurons in the consequent part of the fuzzy rules and it follows a back-propagation algorithm. In addition, in order to optimize the parameters of the proposed network, we use real-coded genetic algorithms. Finally, we design the optimized pattern recognizer using the experimental data for pattern recognition.

Nonlinear Characteristics of Fuzzy Inference Systems by Means of Individual Input Space (개별 입력 공간에 의한 퍼지 추론 시스템의 비선형 특성)

  • Park, Keon-Jun;Lee, Dong-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5164-5171
    • /
    • 2011
  • In fuzzy modeling for nonlinear process, typically using the given data, the fuzzy rules are formed by the input variables and the space division by selecting the input variable and dividing the input space for each input variables. The premise part of the fuzzy rule is identified by selection of the input variables, the number of space division and membership functions and the consequent part of the fuzzy rule is identified by polynomial functions in the form of simplified and linear inference. In general, formation of fuzzy rules for nonlinear processes using the given data have the problem that the number of fuzzy rules exponentially increases. To solve this problem complex nonlinear process can be modeled by separately forming the fuzzy rules by means of fuzzy division of each input space. Therefore, this paper utilizes individual input space to generate fuzzy rules. The premise parameters of the fuzzy rules are identified by Min-Max method using the minimum and maximum values of input data set and membership functions are used as a series of triangular, gaussian-like, trapezoid-type membership functions. And lastly, using the data which is widely used in nonlinear process we evaluate the performance and the system characteristics.

SVD-LDA: A Combined Model for Text Classification

  • Hai, Nguyen Cao Truong;Kim, Kyung-Im;Park, Hyuk-Ro
    • Journal of Information Processing Systems
    • /
    • v.5 no.1
    • /
    • pp.5-10
    • /
    • 2009
  • Text data has always accounted for a major portion of the world's information. As the volume of information increases exponentially, the portion of text data also increases significantly. Text classification is therefore still an important area of research. LDA is an updated, probabilistic model which has been used in many applications in many other fields. As regards text data, LDA also has many applications, which has been applied various enhancements. However, it seems that no applications take care of the input for LDA. In this paper, we suggest a way to map the input space to a reduced space, which may avoid the unreliability, ambiguity and redundancy of individual terms as descriptors. The purpose of this paper is to show that LDA can be perfectly performed in a "clean and clear" space. Experiments are conducted on 20 News Groups data sets. The results show that the proposed method can boost the classification results when the appropriate choice of rank of the reduced space is determined.

Design of Hard Partition-based Non-Fuzzy Neural Networks

  • Park, Keon-Jun;Kwon, Jae-Hyun;Kim, Yong-Kab
    • International journal of advanced smart convergence
    • /
    • v.1 no.2
    • /
    • pp.30-33
    • /
    • 2012
  • This paper propose a new design of fuzzy neural networks based on hard partition to generate the rules of the networks. For this we use hard c-means (HCM) clustering algorithm. The premise part of the rules of the proposed networks is realized with the aid of the hard partition of input space generated by HCM clustering algorithm. The consequence part of the rule is represented by polynomial functions. And the coefficients of the polynomial functions are learned by BP algorithm. The number of the hard partition of input space equals the number of clusters and the individual partitioned spaces indicate the rules of the networks. Due to these characteristics, we may alleviate the problem of the curse of dimensionality. The proposed networks are evaluated with the use of numerical experimentation.

Design of Type-2 FCM-based Fuzzy Inference Systems and Its Optimization (Type-2 FCM 기반 퍼지 추론 시스템의 설계 및 최적화)

  • Park, Keon-Jun;Kim, Yong-Kab;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2157-2164
    • /
    • 2011
  • In this paper, we introduce a new category of fuzzy inference system based on Type-2 fuzzy c-means clustering algorithm (T2FCM-based FIS). The premise part of the rules of the proposed model is realized with the aid of the scatter partition of input space generated by Type-2 FCM clustering algorithm. The number of the partition of input space is composed of the number of clusters and the individual partitioned spaces describe the fuzzy rules. Due to these characteristics, we can alleviate the problem of the curse of dimensionality. The consequence part of the rule is represented by polynomial functions with interval sets. To determine the structure and estimate the values of the parameters of Type-2 FCM-based FIS we consider the successive tuning method with generation-based evolution by means of real-coded genetic algorithms. The proposed model is evaluated with the use of numerical experimentation.

Vibratory Loads Reduction of a Coaxial Rotorcraft Using Individual Blade Control Scheme (개별 블레이드 제어(IBC) 기법을 이용한 동축반전 회전익기의 진동하중 억제에 관한 연구)

  • Hong, Seonghyun;You, Younghyun;Jung, Sung Nam;Kim, Do-Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.5
    • /
    • pp.364-370
    • /
    • 2019
  • In this paper, an individual blade control (IBC) methodology is applied to find the best input scenario for vibratory hub loads reduction of XH-59A co-axial rotorcraft in high speed flight. A comprehensive aeromechanics analysis code CAMRAD II is employed to analyze the aircraft. A parametric study is conducted for optimum IBC inputs leading to the maximum vibration reduction. Numerical results demonstrate that up to 50% reduction in the hub vibration index is obtained for an IBC input at 3/rev frequency with the amplitude and phase angle of 0.5 deg. and 300 deg., respectively. The upper rotor exhibits as much as 6% more vibration reduction as compared to that of the lower rotor due to a clean inflow characteristic of the rotor. It is found that further vibration reduction gain is reached for IBC inputs with advancing-side only control. The hub vibration becomes reduced by up to 17% in reference to that with full rotor disk control. It is noted that the additional gain is obtained with significantly less power input with the advancing-side only control.

Information Propagation Neural Networks for Real-time Recognition of Vehicles in bad load system (최악환경의 도로시스템 주행시 장애물의 인식율 위한 정보전파 신경회로망)

  • Kim, Jong-Man;Kim, Won-Sop;Lee, Hai-Ki;Han, Byung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05b
    • /
    • pp.90-95
    • /
    • 2003
  • For the safety driving of an automobile which is become individual requisites, a new Neural Network algorithm which recognized the load vehicles in real time is proposed. The proposed neural network technique is the real time computation method through the inter-node diffusion. In the network, a node corresponds to a state in the quantized input space. Each node is composed of a processing unit and fixed weights from its neighbor nodes as well as its input terminal. The most reliable algorithm derived for real time recognition of vehicles, is a dynamic programming based algorithm based on sequence matching techniques that would process the data as it arrives and could therefore provide continuously updated neighbor information estimates. Through several simulation experiments, real time reconstruction of the nonlinear image information is processed. 1-D LIPN hardware has been composed and various experiments with static and dynamic signals have been implemented.

  • PDF

Private Contents Management and Sharing Service with Voluntary Sharing Economy System (자발적 공유 경제 방식의 개인 콘텐츠 관리 및 공유 시스템)

  • Ryu, Hyesong;Hong, Kwangjin;Jung, Keechul
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.9
    • /
    • pp.1698-1709
    • /
    • 2016
  • These days, anyone can easily product and share their own content through a web service such as blogs and SNS. However, contents are being operated separately because of the space limitation in individual SNS. Therefore, it is hard to search contents efficiently in individual SNS. To solve this problem, this paper propose a "Private Contents Management and Sharing Service with Voluntary Sharing Economy System." The system is in part [Input], [Save] and it provides a way to collect the content that are scattered on the Internet based on the creation of personal index. It also proposes a more systematic content management and sharing by creating and updating the website standard index by introducing an index Coordinator concept. Furthermore in [Use] section, by providing a portion of the index as the primary search results, it avoid unclassified content list which was simply collected by users. In conclusion, unlike previous studies, this system will contribute to the acquisition and management of interspersed content and ultimately contribute to the shared activation by preventing secondary processing and unauthorized processing to the original article.

Denoise of Astronomical Images with Deep Learning

  • Park, Youngjun;Choi, Yun-Young;Moon, Yong-Jae;Park, Eunsu;Lim, Beomdu;Kim, Taeyoung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.54.2-54.2
    • /
    • 2019
  • Removing noise which occurs inevitably when taking image data has been a big concern. There is a way to raise signal-to-noise ratio and it is regarded as the only way, image stacking. Image stacking is averaging or just adding all pixel values of multiple pictures taken of a specific area. Its performance and reliability are unquestioned, but its weaknesses are also evident. Object with fast proper motion can be vanished, and most of all, it takes too long time. So if we can handle single shot image well and achieve similar performance, we can overcome those weaknesses. Recent developments in deep learning have enabled things that were not possible with former algorithm-based programming. One of the things is generating data with more information from data with less information. As a part of that, we reproduced stacked image from single shot image using a kind of deep learning, conditional generative adversarial network (cGAN). r-band camcol2 south data were used from SDSS Stripe 82 data. From all fields, image data which is stacked with only 22 individual images and, as a pair of stacked image, single pass data which were included in all stacked image were used. All used fields are cut in $128{\times}128$ pixel size, so total number of image is 17930. 14234 pairs of all images were used for training cGAN and 3696 pairs were used for verify the result. As a result, RMS error of pixel values between generated data from the best condition and target data were $7.67{\times}10^{-4}$ compared to original input data, $1.24{\times}10^{-3}$. We also applied to a few test galaxy images and generated images were similar to stacked images qualitatively compared to other de-noising methods. In addition, with photometry, The number count of stacked-cGAN matched sources is larger than that of single pass-stacked one, especially for fainter objects. Also, magnitude completeness became better in fainter objects. With this work, it is possible to observe reliably 1 magnitude fainter object.

  • PDF

Information Propagation Neural Networks for Real-time Recognition of Load Vehicles (도로 장애물의 실시간 인식을 위한 정보전파 신경회로망)

  • Kim, Jong-Man;Kim, Hyong-Suk;Kim, Sung-Joong;Sin, Dong-Yong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.546-549
    • /
    • 1999
  • For the safty driving of an automobile which is become individual requisites, a new Neural Network algorithm which recognized the load vehicles in real time is proposed. The proposed neural network technique is the real time computation method through the inter-node diffusion. In the network, a node corresponds to a state in the quantized input space. Each node is composed of a processing unit and fixed weights from its neighbor nodes as well as its input terminal. The most reliable algorithm derived for real time recognition of vehicles, is a dynamic programming based algorithm based on sequence matching techniques that would process the data as it arrives and could therefore provide continuously updated neighbor information estimates. Through several simulation experiments, real time reconstruction of the nonlinear image information is processed 1-D LIPN hardware has been composed and various experiments with static and dynamic signals have been implmented.

  • PDF