• Title/Summary/Keyword: Indium Zinc Oxide (IZO)

Search Result 81, Processing Time 0.03 seconds

Effects of Deposition Thickness and Oxygen Introduction Flow Rate on Electrical and Optical Properties of IZO Films (증착두께 및 산소도입속도가 IZO 필름의 전기 및 광학적 특성에 미치는 영향)

  • Park, Sung-Hwan;Ha, KiRyong
    • Applied Chemistry for Engineering
    • /
    • v.21 no.2
    • /
    • pp.224-229
    • /
    • 2010
  • Transparent conductive oxide films have been widely used in the field of flat panel display (FPD). Transparent conductive Indium Zinc Oxide (IZO) thin films with excellent chemical stability have attracted much attention as an alternative material for Indium Tin Oxide (ITO) films. In this study, using $In_2O_3$ and ZnO powder mixture with a ratio of 90 : 10 wt% as a target, IZO films are prepared on polynorbornene (PNB) substrates by electron beam evaporation. The effect of thickness and $O_2$ introduction flow rate on the optical, electrical, structural properties and surface composition of deposited IZO films were investigated by UV/Visible spectrophotometer, 4-point probe method, SEM, XRD and XPS.

Characterization of OLED devices using IZO and IZTO films deposited by DC magnetron sputtering (DC 마그네트론 스퍼터링법에 의해 증착된 IZO 및 IZTO 박막을 사용한 OLED 소자의 특성)

  • Kim, Se-Il;Jeong, Tae-Dong;Song, Pung-Geun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.197-197
    • /
    • 2009
  • Indium tin oxide (ITO), Indium zinc oxide (IZO) 박막은 DC 마그네트론 스퍼터링 시스템을 이용하여 유리기판 위에 증착되었으며, Indium-zinc-tin oxide (IZTO) 박막은 두 개의 캐소드(DC, RF)를 사용한 마그네트론 이원동시방전 시스템에 의해 증착되었다. 모든 박막은 상온 증착 후 $200^{\circ}C$에서 후열처리 되었으며, IZO에 Sn이 소량 첨가됨에 따라 IZO보다 더 낮은 비저항을 갖는 것을 확인할 수 있었다.

  • PDF

Characteristics of indium zinc oxide thin films with input power and film thickness (투입전력 및 두께 변화 조건에 따른 Indium zinc oxide 박막의 특성)

  • Rim, You-Seung;Kim, Sang-Mo;Keum, Min-Jong;Son, In-Hwan;Jang, Kyung-Wook;Kim, Kyung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.406-407
    • /
    • 2007
  • We prepared indium zinc oxide (IZO) thin film for cathode electrode such as an application of flat panel display by using the facing targets sputtering (FTS) method at room temperature. The effects of input power and film thickness were investigated with respect to physical and optical properties of films such as deposition rate, electrical properties, microstructure and transmittance. We could obtain properties of IZO thin films of under $10^{-3}\;{\Omega}-cm$ in resistivity and the thin films of over 90% in transmittance. Also, we obtained IZO thin films which were an amorphous structure.

  • PDF

Electrical and Optical Properties of IZO Films Deposited on Polynorbornene Substrate (Polynorbornene 기판 위에 증착된 IZO 필름의 전기 및 광학적 특성연구)

  • Park, Sung-Hwan;Ha, KiRyong
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.612-616
    • /
    • 2009
  • Transparent conductive oxide (TCO) films have been widely used in the field of flat panel display industry. Transparent conductive indium zinc oxide (IZO) thin films with excellent chemical stability have attracted much attention as an alternative material for indium tin oxide (ITO) films. In this study, using a $In_2O_3$ and ZnO powder mixture with a ratio of 90 : 10wt% as a target, IZO films were prepared on polynorbornene (PNB) substrates by electron beam evaporation. The effect of substrate temperature and $O_2$ introduction flow rate were investigated in terms of electrical and optical properties of deposited IZO films. The best electrical and optical properties we obtained from this study were sheet resistance value of $5.446{\times}10^2{\Omega}/{\boxempty}$ and optical transmittance of 87.4% at 550 nm at $O_2$ introduction flow rate of 4 sccm, deposition rate of $2{\AA}$/sec, thickness of 1000 $\AA$ and substrate temperature of $150^{\circ}C$.

Optical and electrical property of Indium-doped ZnO (IZO) grown by Atomic Layer Deposition (ALD) using Et2InN(TMS)2 as In precursor and H2O oxidant

  • Jo, Yeong-Jun;Jang, Hyo-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.421.1-421.1
    • /
    • 2016
  • We studied indium-doped zinc oxide (IZO) film grown by atomic layer deposition (ALD) as transparent conductive oxide (TCO). A variety of TCO layer, such as ZnO:Al (AZO), InSnO2(ITO), Zn (O,S) etc, has been grown by various method, such as ALD, chemical vapor deposition (CVD), sputtering, laser ablation, sol-gel technique, etc. Among many deposition methods, ALD has various advantages such as uniformity of film thickness, film composition, conformality, and low temperature deposition, as compared with other techniques. In this study, we deposited indium-doped zinc oxide thin films using diethyl[bis(trimethylsilyl)amido]indium [Et2InN(TMS)2] as indium precursor, DEZn as zinc precursor and H2O as oxidant for ALD and investigated the optical and electrical properties of IZO films. As an alternative, this liquid In precursor would has several advantages in indium oxide thin-film processes by ALD, especially for low resistance indium oxide thin film and high deposition rate as compared to InCp, InCl3, TMIn precursors etc. We found out that Indium oxide films grown by Et2InN(TMS)2 and H2O precursor show ALD growth mode and ALD growth window. We also found out the different growth rate of Indium oxide as the substrate and investigated the effect of the substrate on Indium oxide growth.

  • PDF

Effect of Indium Zinc Oxide Transparent Electrode on Power Conversion Efficiency of Flexible Dye-Sensitized Solar Cells (플렉시블 염료 감응형 솔라셀의 효율에 미치는 Indium Zinc Oxide 투명전극의 영향)

  • Lee, Do Young;Chung, Chee Won
    • Korean Chemical Engineering Research
    • /
    • v.47 no.1
    • /
    • pp.105-110
    • /
    • 2009
  • IZO thin films have been deposited on poly(ethylene terephthalate) flexible substrate under varying radio frequency (rf) power, process pressure and thickness of IZO films using rf magnetron sputtering under $Ar/O_2$ gas mix. As the process pressure increased, the deposition rate was slightly increased and the transmittance showed little change, but the resistivity was increased. With increasing rf power, the great increase in deposition rate was observed but the transmittance showed a slight change only, and the resistivity was decreased. In addition, an attempt was made to find the optimal thickness of IZO films under varying the thickness of IZO films at the process conditions of 1 mTorr pressure and 90 W rf power, which showed lowest resistivity. IZO thin films with the thickness of $1,500{\AA}$ showed lowest resistivity and also showed highest transmittance around the wavelength zone of the maximum absorption. The power conversion efficiency of solar cells fabricated using various transparent electrodes with different thicknesses were measured and the solar cell with IZO electrode of $1,500{\AA}$ showed the maximum conversion-efficiency of 2.88 %.

Indium-Zinc Oxide Thin Film Transistors Based N-MOS Inverter (Indium-Zinc 산화물 박막 트랜지스터 기반의 N-MOS 인버터)

  • Kim, Han-Sang;Kim, Sung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.7
    • /
    • pp.437-440
    • /
    • 2017
  • We report on amorphous thin-film transistors (TFTs) with indium zinc oxide (IZO) channel layers that were fabricated via a solution process. We prepared the IZO semiconductor solution with 0.1 M indium nitrate hydrate and 0.1 M zinc acetate dehydrate as precursor solutions. The solution- processed IZO TFTs showed good performance: a field-effect mobility of $7.29cm^2/Vs$, a threshold voltage of 4.66 V, a subthreshold slope of 0.48 V/dec, and a current on-to-off ratio of $1.62{\times}10^5$. To investigate the static response of our solution-processed IZO TFTs, simple resistor load-type inverters were fabricated by connecting a $2-M{\Omega}$ resistor. Our IZOTFTbased N-MOS inverter performed well at operating voltage, and therefore, isa good candidate for advanced logic circuits and display backplane.

Characteristics of Indium Zinc Oxide thin films deposited on polymer substrate (폴리머 기판상에 제작한 Indium Zinc Oxide 박막의 특성)

  • Rim, You-Seung;Kim, Sang-Mo;Lee, Won-Jae;Kim, Kyung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.405-406
    • /
    • 2008
  • The amorphous indium zinc oxide (IZO) thin films were deposited on polyethersulfone (PES) and glass substrates by facing targets sputtering. IZO thin films deposited as functions of gas flow ratio on PES and glass substrates, respectively. The electrical, optical and structural properties of IZO thin films were evaluated by a Hall Effect Measurement, an X-Ray Diffractormeter, UV/VIS spectrometer in visible range and a scanning electron microscopy, respectively. As-deposited IZO thin films exhibited resistivity of $5.4\times10^{-4}$ and $4.5\times10^{-4}$ [$\Omega$-cm] on PES and glass substrates, respectively. The optical transmittance showed over 85% in the visible region on PES and glass substrates.

  • PDF

Dry Etching Characteristics of Indium Zinc Oxide Thin Films in Adaptive Coupled Plasma

  • Woo, Jong-Chang;Choi, Chang-Auck;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.4
    • /
    • pp.216-220
    • /
    • 2013
  • The etching characteristics of indium zinc oxide (IZO) in $Cl_2/Ar$ plasma were investigated, including the etch rate and selectivity of IZO. The IZO etch rate showed non-monotonic behavior with increasing $Cl_2$ fraction in the $Cl_2/Ar$ plasma, and with increasing source power, bias power, and process pressure. In the $Cl_2/Ar$ (75:25%) gas mixture, a maximum IZO etch rate of 87.6 nm/min and etch selectivity of 1.09 for IZO to $SiO_2$ were obtained. Owing to the relatively low volatility of the by-products formation, ion bombardment was required, in addition to physical sputtering, to obtain high IZO etch rates. The chemical state of the etched surfaces was investigated with X-ray photoelectron spectroscopy. These data suggested that the IZO etch mechanism was ion-enhanced chemical etching.