• 제목/요약/키워드: Indium Tin Oxide(ITO)/glass substrate

검색결과 115건 처리시간 0.031초

The Fabrication of OLED using PBD as a Hole Blocking Layer

  • Kang, Min-Woong;Kim, Jong-Sung;Kwon, Sang-Jik;Lee, Hoo-Kyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.784-787
    • /
    • 2002
  • Oganic light emitting diodes (OLEDs) using PBD(2-(4-biphenylyl)-5-(4-tert-butylpheny)-1,3,4oxadiazole) as a hole blocking layer were fabricated and their device performances were investigated. The devices have a structure of glass substrate ${\setminus}$ indium tin oxide (ITO) ${\setminus}$ TPD(HTL)${\setminus}$PBD,BCP(HBL)${\setminus}$Alq3(EIL)${\setminus}$Mg:Ag(cathode). In this work Bathocuproine(BCP:2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline) and PBD which were previously known as a good ETL material were used as a HBL. By employing HBL, the luminance and quantum efficiency of OLEDs could be improved due to the increase of recombination probability of electrons and holes.

  • PDF

Organic transistor comprising a polymer gate insulator

  • Kang, Gi-Wook;Kang, Hee-Young;Ahn, Young-Joo;Lee, Nam-Heon;Lee, Mun-Jae;Lim, Jong-Tae;Lee, Chang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.777-779
    • /
    • 2002
  • We report the performance of pentacene-based organic thin film transistors (OTFT) with PMMA (polymethyl methacrylate) as the gate insulator which was spin-coated on the ITO (indium tin oxide) glass substrate which was used as the gate contact. The pentacene thin film was deposited on the PMMA film and then Au source/drain contacts were deposited through shadow mask. The pentacene film shows better molecular ordering on PMMA compared with $SiO_2$ of Si wafer. The devices exhibited the field effect mobility of ${\sim}0.004cm^2$/Vs and on/off current ratio of ${\sim}10^3$.

  • PDF

Laser Direct Patterning of Carbon Nanotube Film

  • 윤지욱;조성학;장원석
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.203-203
    • /
    • 2012
  • The SWCNTs network are formed on various plastic substrates such as poly(ethylene terephthalate) (PET), polyimide (PI) and soda lime glass using roll-to-roll printing and spray process. Selective patterning of carbon nanotubes film on transparent substrates was performed using a femtosecond laser. This process has many advantages because it is performed without chemicals and is easily applied to large-area patterning. It could also control the transparency and conductivity of CNT film by selective removal of CNTs. Furthermore, selective cutting of carbon nanotube using a femtosecond laser does not cause any phase change in the CNTs, as usually shown in focused ion beam irradiation of the CNTs. The patterned SWCNT films on transparent substrate can be used electrode layer for touch panels of flexible or flat panel display instead indium tin oxide (ITO) film.

  • PDF

3전극형 반사형 디스플레이의 단일컬러 구현 및 구동방법 (Single Color Realization and Driving Method of Three-Electrode Type Reflective Display)

  • 이상일;김영조
    • 한국전기전자재료학회논문지
    • /
    • 제28권2호
    • /
    • pp.109-114
    • /
    • 2015
  • We realize a color reflective display without any color filter and sub-pixelation concept, by which the full or single color realization is basically impossible. In this study, we use a 3-electrode on the lower substrate with indium tin oxide (ITO) glass. The width of a rib is $30{\mu}m$, a cell size is $150{\mu}m{\times}150{\mu}m$, and the space of lower electrodes is $10{\mu}m$. To get the single color, we drive this panel by a identical algorithm based on the movement of charged particle in color fluid within a cell with hermetic seal. According to the driving method, the lifetime of panel is different.

$Alq_3$/TPD EL소자의 제작과 그 특성에 관한 연구 (Preparation and characterization of $Alq_3$/TPD EL devices)

  • 채수길;김태완;강도열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 C
    • /
    • pp.1469-1471
    • /
    • 1997
  • In this study, Organic electroluminescent(EU devices with multilayer structures were fabricated using tris (8-hydroxy quinolinate) aluminum($Alq_3$) as an electron-tran sporting emitting layer and TPD(N,N'-diphenyl-N,N'-bis(3-methylphenyl)-[1,1'-biphenyl]-4,4'-diamine : aromatic diamine) as a hole-transporting layer. A cell with a structure of glass substrate/indium-tin-oxide(ITO)/$Alq_3$/TPD/Mg:In exhibited bright green electroluminescence from the TPD layer. The peak intensity of TPD and $Alq_3$ different from spin coating and vacuum evaporation. The peak emission energy shifts to a higher energy with deposition technique. An emission peak at 500nm was achieved at a driving voltage of 30V.

  • PDF

펨토초 레이저와 나노초 레이저를 이용한 ITO Glass의 어블레이션 비교 연구 (A Comparative Study of ITO Glass Ablation Using Femtosecond and Nanosecond Lasers)

  • 전진우;신영관;김훈영;최원석;지석영;강희신;안상훈;장원석;조성학
    • 한국광학회지
    • /
    • 제28권6호
    • /
    • pp.356-360
    • /
    • 2017
  • ITO는 높은 전기 전도도와 가시광선, 근적외선 영역에서 투명성을 가진다. LCD, OLED 등을 포함한 광학에 적용되는 부품들의 제조에 투명전극으로 ITO가 사용되고 있다. 가시광선 영역에서의 투명성과 높은 전도도 때문에 다양한 전기, 디스플레이 센서의 전극으로 이용되었다. 한 가지 사안은 기판의 특성에 충격없이 ITO, 금속 필름같은 특정한 영역의 층을 제거하는 부분이다. 레이저를 사용한 유리 위의 ITO 제거는 기존 방법에 비해 친환경적이다. 본 연구는 펨토초 레이저와 나노초 레이저를 사용하여 ITO를 제거하는 비교분석이다.

투명한 p형 반도체 CuAlO2 박막의 일산화질소 가스 감지 특성 (Nitrogen Monoxide Gas Sensing Characteristics of Transparent p-type Semiconductor CuAlO2 Thin Films)

  • 박수정;김효진;김도진
    • 한국재료학회지
    • /
    • 제23권9호
    • /
    • pp.477-482
    • /
    • 2013
  • We investigated the detection properties of nitrogen monoxide (NO) gas using transparent p-type $CuAlO_2$ thin film gas sensors. The $CuAlO_2$ film was fabricated on an indium tin oxide (ITO)/glass substrate by pulsed laser deposition (PLD), and then the transparent p-type $CuAlO_2$ active layer was formed by annealing. Structural and optical characterizations revealed that the transparent p-type $CuAlO_2$ layer with a thickness of around 200 nm had a non-crystalline structure, showing a quite flat surface and a high transparency above 65 % in the range of visible light. From the NO gas sensing measurements, it was found that the transparent p-type $CuAlO_2$ thin film gas sensors exhibited the maximum sensitivity to NO gas in dry air at an operating temperature of $180^{\circ}C$. We also found that these $CuAlO_2$ thin film gas sensors showed reversible and reliable electrical resistance-response to NO gas in the operating temperature range. These results indicate that the transparent p-type semiconductor $CuAlO_2$ thin films are very promising for application as sensing materials for gas sensors, in particular, various types of transparent p-n junction gas sensors. Also, these transparent p-type semiconductor $CuAlO_2$ thin films could be combined with an n-type oxide semiconductor to fabricate p-n heterojunction oxide semiconductor gas sensors.

a-Si:H Photodiode Using Alumina Thin Film Barrier

  • Hur Chang-Wu;Dimitrijev Sima
    • Journal of information and communication convergence engineering
    • /
    • 제3권4호
    • /
    • pp.179-183
    • /
    • 2005
  • A photodiode capable of obtaining a sufficient photo/ dark current ratio at both forward bias state and reverse bias state is proposed. The photodiode includes a glass substrate, an aluminum film formed as a lower electrode over the glass substrate, an alumina film formed as an insulator barrier over the aluminum film, a hydrogenated amorphous silicon film formed as a photo conduction layer over a portion of the alumina film, and a transparent conduction film formed as an upper electrode over the hydro-generated amorphous silicon film. A good quality alumina $(Al_2O_3)$ film is formed by oxidation of aluminum film using electrolyte solution of succinic acid. Alumina is used as a potential barrier between amorphous silicon and aluminum. It controls dark-current restriction. In case of photodiodes made by changing the formation condition of alumina, we can obtain a stable dark current $(\~10^{-12}A)$ in alumina thickness below $1000{\AA}$. At the reverse bias state of the negative voltage in ITO (Indium Tin Oxide), the photo current has substantially constant value of $5{\times}10^{-9}$ A at light scan of 100 1x. On the other hand, the photo/dark current ratios become higher at smaller thicknesses of the alumina film. Therefore, the alumina film is used as a thin insulator barrier, which is distinct from the conventional concept of forming the insulator barrier layer near the transparent conduction film. Also, the structure with the insulator thin barrier layer formed near the lower electrode, opposed to the ITO film, solves the interface problem of the ITO film because it provides an improved photo current/dark current ratio.

Study of Magnetic Field Shielded Sputtering Process as a Room Temperature High Quality ITO Thin Film Deposition Process

  • Lee, Jun-Young;Jang, Yun-Sung;Lee, You-Jong;Hong, Mun-Pyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.288-289
    • /
    • 2011
  • Indium Tin Oxide (ITO) is a typical highly Transparent Conductive Oxide (TCO) currently used as a transparent electrode material. Most widely used deposition method is the sputtering process for ITO film deposition because it has a high deposition rate, allows accurate control of the film thickness and easy deposition process and high electrical/optical properties. However, to apply high quality ITO thin film in a flexible microelectronic device using a plastic substrate, conventional DC magnetron sputtering (DMS) processed ITO thin film is not suitable because it needs a high temperature thermal annealing process to obtain high optical transmittance and low resistivity, while the generally plastic substrates has low glass transition temperatures. In the room temperature sputtering process, the electrical property degradation of ITO thin film is caused by negative oxygen ions effect. This high energy negative oxygen ions(about over 100eV) can be critical physical bombardment damages against the formation of the ITO thin film, and this damage does not recover in the room temperature process that does not offer thermal annealing. Hence new ITO deposition process that can provide the high electrical/optical properties of the ITO film at room temperature is needed. To solve these limitations we develop the Magnetic Field Shielded Sputtering (MFSS) system. The MFSS is based on DMS and it has the plasma limiter, which compose the permanent magnet array (Fig.1). During the ITO thin film deposition in the MFSS process, the electrons in the plasma are trapped by the magnetic field at the plasma limiters. The plasma limiter, which has a negative potential in the MFSS process, prevents to the damage by negative oxygen ions bombardment, and increases the heat(-) up effect by the Ar ions in the bulk plasma. Fig. 2. shows the electrical properties of the MFSS ITO thin film and DMS ITO thin film at room temperature. With the increase of the sputtering pressure, the resistivity of DMS ITO increases. On the other hand, the resistivity of the MFSS ITO slightly increases and becomes lower than that of the DMS ITO at all sputtering pressures. The lowest resistivity of the DMS ITO is $1.0{\times}10-3{\Omega}{\cdot}cm$ and that of the MFSS ITO is $4.5{\times}10-4{\Omega}{\cdot}cm$. This resistivity difference is caused by the carrier mobility. The carrier mobility of the MFSS ITO is 40 $cm^2/V{\cdot}s$, which is significantly higher than that of the DMS ITO (10 $cm^2/V{\cdot}s$). The low resistivity and high carrier mobility of the MFSS ITO are due to the magnetic field shielded effect. In addition, although not shown in this paper, the roughness of the MFSS ITO thin film is lower than that of the DMS ITO thin film, and TEM, XRD and XPS analysis of the MFSS ITO show the nano-crystalline structure. As a result, the MFSS process can effectively prevent to the high energy negative oxygen ions bombardment and supply activation energies by accelerating Ar ions in the plasma; therefore, high quality ITO can be deposited at room temperature.

  • PDF

GDI Host-Dopant를 이용한 청색 유기발광다이오드의 제작 (Fabrication of Blue OLED with GDI Host and Dopant)

  • 장지근;신세진;강의정;김희원;서동균;임용규;장호정
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2005년도 추계종합학술대회
    • /
    • pp.773-776
    • /
    • 2005
  • In the fabrication of high performance Blue organic light emitting diode, 2-TNATA[4,4',4"-tris(2-naphthylphenyl-phenylamino)-triphenylamine] as hole injection material and NPB[N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] as hole transport material were deposited on the ITO (Indium Tin Oxide)/Glass substrate by vacuum evaporation. And then, Blue color emission layer was deposited using GDI602 as a host material and GDI691 as a dopant. Finally, small molecule OLED with the structure of ITO/2-TNATA/NPB/GDI602+GDI691/Alq3/LiF/Al was obtained by in-situ deposition of Alq3, LiF and Al as electron transport material, electron injection material and cathode, respectively. Blue OLED fabricated in our experiments showed the color coordinate of CIE(0.14, 0.16) and the maximum luminescence efficiency of 1.06 lm/W at 11 V with the peak emission wavelength of 464 nm.

  • PDF