• Title/Summary/Keyword: Indium Tin Oxide(ITO)/glass substrate

Search Result 115, Processing Time 0.026 seconds

ITO Films Deposited by Sputter Method of Powder Target at Room Temperature. (상온에서 분말타겟의 스퍼터에 의해 증착된 ITO박막)

  • 김현후;이재형;신성호;신재혁;박광자
    • Journal of Surface Science and Engineering
    • /
    • v.33 no.5
    • /
    • pp.349-355
    • /
    • 2000
  • Indium tin oxide (ITO) thin films have been deposited on PET (polyethylene terephthalate) and glass substrates by a do magnetron sputter method of powder target without heat treatments such as substrate heater and post heat treatment. During the sputtering deposition, sputtering parameters such as sputtering power, working pressure, oxygen gas mixture, film thickness and substrate-target distance are important factors for the high quality of ITO thin films. The structural, electrical and optical properties of as-deposited ITO oxide films are investigated by sputtering power, oxygen partial pressure and films thickness among the several sputtering conditions. XRD patterns of ITO films are affected by sputtering power and pressure. As the power and pressure are increased, (411) and (422) peaks of ITO films are grown strongly. Electrical resistivity is also increased, as the sputtering power and pressure are increased. Transmittance of ITO thin films in the visible light ranges is lowered with an increase of sputtering power and film thickness. Reflectance of ITO films in infra-red region is decreased, as the power and pressure is increased.

  • PDF

Properties of IZTO Thin Film prepared by the Hetero-Target sputtering system (ITO-IZO 이종 타겟 이용한 Indium Zinc Tin Oxide(IZTO)박막의 특성)

  • Kim, Dae-Hyun;Rim, You-Seong;Jang, Kyung-Uk;Kim, Kyung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.439-440
    • /
    • 2008
  • Indium Zinc Tin Oxide (IZTO) thin films for transparent thin film transistor (TTFT) were deposited on glass substrate at room temperature by facing targets sputtering (FTS). The FTS system was designed to array two targets facing each other and forms the high- density plasma between. Two different kinds of targets were installed on FTS system. One is ITO ($In_2O_3$ 90wt.%, $SnO_2$ 10wt.%), the other is IZO($In_2O_3$ 90wt%, ZnO 10wt%). The conductive and optical properties of IZTO thin film is determined depending on variation of DC power and working pressure. Therefore, IZTO thin films were prepared with different DC power and working pressure. As-deposited IZTO thin films were investigated by a UV/VIS spectrometer, an X-ray diffractometer (XRD), a scanning electron microscopy (SEM), a Hall Effect measurement system. As a result, all IZTO thin films deposited on glass substrate showed over 80% of transmittance in visible range (400~800 nm) at $O_2$ gas flow rate. We could obtain IZTO thin films with the lowest resistivity $5.67\times10^{-4}$ [$\Omega{\cdot}cm$] at $O_2$ gas flow rate 0.4 [sccm).

  • PDF

Electrical and Optical Properties of ITO Films Sputtered by RF -bias Voltage and In-Sn Alloy Target

  • Kim, Hyun-Hoo;Shin, Sung-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.4
    • /
    • pp.153-157
    • /
    • 2004
  • ITO thin films were deposited on PET and soda-lime glass substrates by a dc reactive magnetron sputtering of In-Sn alloy metal target without substrate heater and post-deposition thermal treatment. The dependency of rf-bias voltage and substrate power during deposition processing was investigated to control the electrical and optical properties of ITO films. The range of rf bias voltage is from 0 to -80 V and the substrate power is applied from 10 to 50 W. The minimum resistivity of ITO film is 5.4${\times}$10$^{-4}$ $\Omega$cm at 50 W power and rf-bias voltage of -20 V. The best transmittance of ITO films at 550 nm wavelength is 91 % in the substrate power of 30 W and rf-bias voltage of -80 V.

Dependance of the Process Parameters on the Characteristic of the ITO Thin Films (ITO 박막의 공정변수에 따른 특성 연구)

  • 김소라;서정은;김상호
    • Journal of Surface Science and Engineering
    • /
    • v.37 no.3
    • /
    • pp.158-163
    • /
    • 2004
  • ITO thin film was deposited on the glass by RF magnetron sputtering. Dependance of the process parameters such as thickness, target-to-substrate distance, substrate temperature and oxygen partial pressure on the transmittance and electrical resistance of ITO film were investigated. The deposition conditions for getting better optical and electrical ITO characteristics were the 1800-$2300\AA$ thickness, 65mm substrate-to-target distance, $350^{\circ}C$ substrate temperature and 8% oxygen partial pressure. At these conditions, the transmittance and sheet resistance of the ITO film were 83.3% and 77.86Ω/$\square$, respectively.

Photovoltaic Properties of Sintered CdS/CdTe Solar Cell (소결체 ITO/CdS/CdTe 태양전지의 광전압특성)

  • 김동섭;조은철;안병태;임호빈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.216-220
    • /
    • 1994
  • Polycrystalline CdS films have been prepared by coating a slurry, which consisted of CdS, 11w% CdCl$_2$ and appropriate amount of propylene glycol, on glass substrate and glass substrate coated with indium tin oxide(ITO) followed by sintering in a nitrogen atmosphere. CdTe slurries consisting of Te powder and Cd powder were coated on the sintered CdS films and ITO/CdS films and were sintered in nitrogen to prepare sintered CdS/CdTe and ITO/CdS/CdTe solar cells. The value of fill factor increased due to low series resistance and open circuit voltage decreased due to low shunt resistance in the ITO/CdS/CdTe solar cells.

Structure and Properties of Sputtered Indium Tin Oxide Thin Film (R.F Sputtering 법으로 증착한 ITO 박막의 미세구조와 전기$\cdot$광학적 특성)

  • Jung Y.H.;Lee E.S.;Munir B.;Wibowo R.A.;Kim K.H.
    • Journal of Surface Science and Engineering
    • /
    • v.38 no.4
    • /
    • pp.150-155
    • /
    • 2005
  • Highly conductive and transparent in the visible region tin-doped indium oxide(ITO) thin films were deposited on Corning glass by r.f sputtering. To achieve high transmittance and low resistivity, we examined various parameters such as r.f power and deposition time. The films crystallinity shifted from (222) to (400) and (440) orientation as deposition time and r.f power increased. Surface roughness RMS value increased proportionally with deposition time. The lowest resistivity was $5.36{\times}10^{-4}{\Omega}{\cdot}cm$ at 750 nm thickness, $200^{\circ}C$ substrate temperature and 125 w r.f power. All of the films showed over $85\%$ transmittance in the visible wavelength range.

Electrical Properties of the (Ba,Sr)$TiO_3$Thin Films Prepared by Sol-Gel Method (Sol-Gel법으로 제조한 (Ba,Sr)$TiO_3$박막의 전기적 특성)

  • 이영희;이문기;정장호;류기원
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.7
    • /
    • pp.592-597
    • /
    • 2000
  • In this study (B $a_{0.5}$/S $r_{0.5}$)Ti $O_3$[BST(50/50)] ceramic thin films were prepared by the Sol-Gel method BST(50/50) stock solution was made and spin-coated on the Indium Tin Oxide(ITO)/glass substrate at 4000 rpm for 30 seconds. The coated films were dried at 35$0^{\circ}C$ for 10 minutes and annealed at 650~75$0^{\circ}C$ for 1 hour. The microstructural properties of the BST(50/50) thin film were studied by the XRD and AFM. The ferroelectric perovskite phase was formed at the annealing condition of 75$0^{\circ}C$ for 1 hour. Dielectric constant and loss of this thin were 370, 3.7% at room temperature respectively. The polarization switching voltage showed the good value of 3V. The leakage current density of the BST(50/50) thin film was 10$^{-7A}$c $m^2$with applied voltage of 1.5V. BST(50/50) thin film capacitors having good dielectric and electrical properties are expecting for the application to the dielectric material of DRAM.RAM.M.

  • PDF

The ablation of ITO thin films by KrF Eximer laser and its characteristics (KrF 엑시머 레이저에 의한 ITO 박막의 어블레이션과 표면특성관찰)

  • Lee, Kyoung-Cheol;Lee, Cheon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.511-514
    • /
    • 2000
  • This work aimed to develop ITO (Indium Tin Oxide) thin films ablation with a KrF Eximer laser required for the application in flat panel display, especially patterning into small geometry on a large substrate area. The threshold fluence for ablating ITO on glass substrate is about 0.1 J/cm$^2$. And its value is much smaller than using third harmonic Nd:YAG laser. Through the optical microscope measurement the surface color of the damaged ITO is changed into dark brown and irradiated spot is completely isolated form the undamaged surroundings by laser light. The XPS analysis showed that the relative surface concentration of Sn and In were essentially unchanged (In :Sn=5:1) after irradiating Eximer laser. Using aluminium mask made by second harmonic Nd:YAG laser the ITO patterning is carried out.

  • PDF

Characterization of Organic Electroluminescent Devices Deposited on ITO/Glass substrate (ITO/Glass 기판위에 증착된 유기 전계발광소자의 특성 평가)

  • 노준서;조중연;장호정
    • Proceedings of the KAIS Fall Conference
    • /
    • 2002.11a
    • /
    • pp.181-184
    • /
    • 2002
  • 본 연구에서는 ITO (indium tin oxide) /glass 투명기판 위에 다층구조의 OELD 소자를 진공 열증착법으로 제작하였다. 상부 전극과 하부 전극의 종류에 따른 전류밀도-전압 특성을 측정하였으며, 열적 안정성이 다른 정공 수송충을 사용하여 소자를 제작하고 전기ㆍ광학적 특성을 측정하였다. 사용된 저분자 유기화합물은 발광층으로 녹색의 발광을 가지는 Alq₃(tris-(8-hydroxyquinoline)aluminum)를 사용하였고 정공수송 및 주입층으로는 TPD(triphenyl diamine), α-NPD 그리고 CuPc (Copper phthalocyanine)를 각각 증착하였다. 하부 전극으로 사용된 ITO 투명전극은 면저항이 적을수록 전류밀도가 증가하는 것을 볼 수 있고, 상부 전극의 종류에 따른 전류밀도-전압 특성을 분석한 결과 일함수가 낮은 전극일수륵 전류밀도가 높아지는 것으로 나타났다. 유리전이온도(Tg)가 상대적으로 높은 재료인 α-NPD를 정공수송충으로 사용한 경우 더 양호한 특성을 나타내었다.

Investigation of Transparent Conductive Oxide Films Deposited by Co-sputtering of ITO and AZO (ITO와 AZO 동시 증착법으로 제조된 투명전도막의 특성 연구)

  • Kim, Dong-Ho;Kim, Hye-Ri;Lee, Sung-Hun;Byon, Eung-Sun;Lee, Gun-Hwan
    • Journal of Surface Science and Engineering
    • /
    • v.42 no.3
    • /
    • pp.128-132
    • /
    • 2009
  • Transparent conducting thin films of indium tin oxide(ITO) co-sputtered with aluminum-doped zinc oxide(AZO) were deposited on glass substrate by dual magnetron sputtering. It was found that the electrical properties and structural characteristics of the films are significantly changed according to the sputtering power of the AZO target. The IAZTO film prepared with D.C power of ITO at 100 W and R.F power of AZO at 50 W shows an electrical resistivity of $4.6{\times}10^{-4}{\Omega}{\cdot}cm$ and a sheet resistance of $30{\Omega}/{\square}$ (for 150 nm thick). Besides of the improvement of the electrical properties, compared to the ITO films deposited at the same process conditions, the IAZTO films have very smooth surface, which is due to the amorphous nature of the films. However, the electrical conductivity of the IAZTO films was found to be deteriorated along with the crystallization in case of the high temperature deposition (above $310^{\circ}C$). In this work, high quality amorphous transparent conductive oxide layers could be obtained by mixing AZO with ITO, indicating possible use of IAZTO films as the transparent electrodes in OLED and flexible display devices.