• Title/Summary/Keyword: Indirect emission

Search Result 115, Processing Time 0.031 seconds

An Estimation of Direct and Indirect GHG-AP Integrated Emissions from Energy Sector in Seoul (2010) (서울시 에너지부문 직·간접 온실가스-대기오염 통합 배출량(2010) 산정)

  • Jung, Jaehyung;Kwon, O-Yul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.2
    • /
    • pp.150-160
    • /
    • 2014
  • Greenhouse gas (GHG) and Air Pollution (AP) emission inventories have been constructed and estimated independently up-to-date in Seoul. It causes difficulty in GHG and AP integrated management due to a difference in emission inventories. In this study, we constructed GHG and AP integrated emission inventories for direct and indirect sources in Seoul during the year 2010 in Energy activities for estimating GHG and AP emissions were derived from IPCC guideline, guidelines for local government greenhouse inventories, air pollutants calculation manual, and Indirect Emission Factors (IEF) reported by Korea Power Exchange. The annual GHG emission was estimated as 50,530,566 $tonCO_{2eq}$, of which 54.8% resulted from direct sources and the remaining 45.2% from indirect sources. Among direct sources, transportation sector emitted the largest GHG, accounting for 47.3% of the total emission from direct sources. As with indirect sources, purchased electricity sector only emitted 98.6% of the total emission from indirect sources. The annual AP emission was estimated as 283,701 tonAP, of which 85.9% was contributed by the combined AP emissions of transportation and fugitive sectors. Estimation of individual air pollutant showed that the largest source were transportation sector for CO, $NO_x$, TSP, $PM_{10}$ and NH3, non-energy sector for $SO_x$, and fugitive sector for VOCs. This study found some limitations in estimating GHG and AP integrated emissions, such as nonconforming emission inventories between GHG and AP, and no indirect AP emission factor of purchased electricity, and so on. Those should be further studied and improved for more effective GHG and AP integrated management.

Evaluation of indirect N2O Emission from Nitrogen Leaching in the Ground-water in Korea (우리나라 농경지에서 질소의 수계유출에 의한 아산화질소 간접배출량 평가)

  • Kim, Gun-Yeob;Jeong, Hyun-Cheol;Kim, Min-Kyeong;Roh, Kee-An;Lee, Deog-Bae;Kang, Kee-Kyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1232-1238
    • /
    • 2011
  • This experiment was conducted to measure concentration of dissolved $N_2O$ in ground-water of 59 wells and to make emission factor for assessment of indirect $N_2O$ emission at agricultural sector in agricultural areas of Gyeongnam province from 2007 to 2010. Concentrations of dissolved $N_2O$ in ground-water of 59 wells were ranged trace to $196.6{\mu}g-N\;L^{-1}$. $N_2O$ concentrations were positively related with $NO_3$-N suggesting that denitrification was the principal reason of $N_2O$ production and $NO_3$-N concentration was the best predictor of indirect $N_2O$ emission. The ratio of dissolved $N_2O$-N to $NO_3$-N in ground-water was very important to make emission factor for assessment of indirect $N_2O$ emission at agricultural sector. The mean ratio of $N_2O$-N to $NO_3$-N was 0.0035. It was greatly lower than 0.015, the default value of currently using in the Intergovernmental Panel on Climate Change (IPCC) methodology for assessing indirect $N_2O$ emission in agro-ecosystems (IPCC, 1996). It means that the IPCC's present nitrogen indirect emission factor ($EF_{5-g}$, 0.015) and indirect $N_2O$ emission estimated with IPCC's emission factor are too high to use adopt in Korea. So we recommend 0.0034 as national specific emission factor ($EF_{5-g}$) for assessment of indirect $N_2O$ emission at agricultural sector. Using the estimated value of 0.0034 as the emission factor ($EF_{5-g}$) revised the indirect $N_2O$ emission from agricultural sector in Korea decreased from 1,801,576 ton ($CO_2$-eq) to 964,645 ton ($CO_2$-eq) in 2008. The results of this study suggest that the indirect Emission of nitrous oxide from upland recommend 0.0034 as national specific emission factor ($EF_{5-g}$) for assessment of indirect $N_2O$ emission at agricultural sector.

The Estimation of the Energy Consumption and $C0_2$ Emission at the Construction Stage in the Apartment Housing (공동주택 건설단계 공종별 에너지소비량 및 이산화탄소 배출량 산정연구)

  • Kim, Dae-Hee;Kwon, Bo-Min;Choi, Young-Oh;Lee, Kang-Hee
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2006.11a
    • /
    • pp.328-333
    • /
    • 2006
  • A few methodologies have been recently developed to estimate the environmental affect when various materials and components are used in building life cycle. The direct survey method has limitations to analyze the environmental problems because of the limit of survey scope and cost. Therefore, another indirect method has been developed as alternatives. The indirect method is represented as input-output analysis. This paper aimed at analyzing the estimation the environmental affect of building materials and works at building construction, utilizing the input-output analysis as a indirect estimation method. The results suggested that the building works is overally responsible for the energy consumption and $CO_2$ emission. In other words, Over the 80% of the total consumption and $CO_2$ emission are resulted at the building work.

  • PDF

Assessment of the Contribution of Poultry and Pig Production to Greenhouse Gas Emissions in South Korea Over the Last 10 Years (2005 through 2014)

  • Boontiam, Waewaree;Shin, Yongjin;Choi, Hong Lim;Kumari, Priyanka
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.12
    • /
    • pp.1805-1811
    • /
    • 2016
  • The goal of this study was to estimate the emissions of greenhouse gases (GHG), namely methane ($CH_4$), nitrous oxide ($N_2O$), and carbon dioxide ($CO_2$) from poultry and pig production in South Korea over the last 10 years (2005 through 2014). The calculations of GHG emissions were based on Intergovernmental Panel on Climate Change (IPCC) guidelines. Over the study period, the $CH_4$ emission from manure management decreased in layer chickens, nursery to finishing pigs and gestating to lactating sows, but there was a gradual increase in $CH_4$ emission from broiler chickens and male breeding pigs. Both sows and nursery to finishing pigs were associated with greater emissions from enteric fermentation than the boars, especially in 2009. Layer chickens produced lower direct and indirect $N_2O$ emissions from 2009 to 2014, whereas the average direct and indirect $N_2O$ emissions from manure management for broiler chickens were 12.48 and $4.93Gg\;CO_2-eq/yr$, respectively. Annual direct and indirect $N_2O$ emissions for broiler chickens tended to decrease in 2014. Average $CO_2$ emission from direct on-farm energy uses for broiler and layer chickens were 46.62 and $136.56Gg\;CO_2-eq/yr$, respectively. For pig sectors, the $N_2O$ emission from direct and indirect sources gradually increased, but they decreased for breeding pigs. Carbon dioxide emission from direct on-farm energy uses reached a maximum of $53.93Gg\;CO_2-eq/yr$ in 2009, but this total gradually declined in 2010 and 2011. For boars, the greatest $CO_2$ emission occurred in 2012 and was $9.44Gg\;CO_2-eq/yr$. Indirect $N_2O$ emission was the largest component of GHG emissions in broilers. In layer chickens, the largest contributing factor to GHG emissions was $CO_2$ from direct on-farm energy uses. For pig production, the largest component of GHG emissions was $CH_4$ from manure management, followed by $CO_2$ emission from direct on-farm energy use and $CH_4$ enteric fermentation emission, which accounted for 8.47, 2.85, and $2.82Gg-CO_2/yr$, respectively. The greatest GHG emission intensity occurred in female breeding sows relative to boars. Overall, it is an important issue for the poultry and pig industry of South Korea to reduce GHG emissions with the effective approaches for the sustainability of agricultural practices.

A Study on the Functional Unit Trend of Carbon Dioxide Emission in the Construction Materials between 2000, 2003 and 2005 (건축재료의 이산화탄소 배출원단위 변화추이연구)

  • Lee, KangHee;Lee, HaShik;Yang, JaeHyuk
    • KIEAE Journal
    • /
    • v.10 no.5
    • /
    • pp.123-129
    • /
    • 2010
  • This study aimed at analyzing the trend of carbon dioxide emission for direct and indirect areas by using inter industry relations table between 2000, 2003 and 2005 in the key building materials and components. Results of this study are as follows; First, the material and components for this study was selected in 20 industries of products such as sand, gravel, cement, concrete articles, rebar, and steel bar. Second, among the 20 selected key building materials, the group with the highest carbon-dioxide emission was shown in ready-mixed concrete, concrete articles, and primary aluminum goods. Third, as a result of analyzing the changes to the units of carbon dioxide emission according to passage of time, the number of items which is changed in such as sustained increase or decrease over time was insignificant in carbon-emission change trend.

Comparison of Direct and Indirect $CO_2$ Emission in Provincial and Metropolitan City Governments in Korea: Focused on Energy Consumption (우리나라 광역지방자치단체의 직접 및 간접 $CO_2$ 배출량의 비교 연구: 에너지 부문을 중심으로)

  • Kim, Jun-Beum;Chung, Jin-Wook;Suh, Sang-Won;Kim, Sang-Hyoun;Park, Hung-Suck
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.12
    • /
    • pp.874-885
    • /
    • 2011
  • In this study, the urban $CO_2$ emission based on energy consumption (Coal, Petroleum, Electricity, and City Gas) in 16 provincial and metropolitan city governments in South Korea was evaluated. For calculation of the urban $CO_2$ emission, direct and indirect emissions were considered. Direct emissions refer to generation of greenhouse gas (GHG) on-site from the energy consumption. Indirect emissions refer to the use of resources or goods that discharge GHG emissions during energy production. The total GHG emission was 497,083 thousand ton $CO_2eq.$ in 2007. In the indirect GHG emission, about 240,388 thousand ton $CO_2eq.$ was occurred, as 48% of total GHG emission. About 256,694 thousand ton $CO_2eq.$ (52% of total GHG emissions) was produced in the direct GHG emission. This amount shows 13% difference with 439,698 thousand ton $CO_2eq.$ which is total national GHG emission data using current calculation method. Local metropolitan governments have to try to get accuracy and reliability for quantifying their GHG emission. Therefore, it is necessary to develop and use Korean emission factors than using the IPCC (Intergovernmental Panel on Climate Change) emission factors. The method considering indirect and direct GHG emission, which is suggested in this study, should be considered and compared with previous studies.

Presentation of the Efficient Leakage Detection by the Measurement of Indirect Media-Propagated AE Signal (간접 매체로 전파된 AE신호 측정을 통한 효과적인 누설 검출기법 제시)

  • 이성재;김전하;강명창;김정석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.9
    • /
    • pp.63-68
    • /
    • 2004
  • The high pressure vessels that are constructed by welding process have many welding lines and most of the leakage defects are occurred on these welding lines. The acoustic emission(AE) technique has adopted to detect the defect location and leakage on welding parts, but the AE signal in leakage are incomplete due to the attenuation, reiteration, instability and limit of defect size. To overcome these troubles, the experiments in this study are conducted to measure the indirect media-propagated AE signal perpendicular to the leakage hole. The AE signals that are acquired from the direct and indirect media are analyzed, and the reliability of the indirect media-propagated AE signal are examined experimentally. By AE signal investigation, this method can be adopted to detect efficiently the leakage in welding parts.

Assessment on Nitrous oxide (N2O) Emissions of Korea Agricultural Soils in 2009 (2009년 우리나라 농경지 토양에서의 N2O 배출량 평가)

  • Jeong, Hyun-Cheol;Kim, Gun-Yeob;Lee, Deog-Bae;Shim, Kyo-Moon;Lee, Seul-Bi;Kang, Kee-Kyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1207-1213
    • /
    • 2011
  • This study was conducted to assess $N_2O$ emissions in agricultural soils of Korea. According to 1996 and 2006 IPCC (Intergovernmental Panel on Climate Change) methodology, $N_2O$ emission was calculated the sum of direct emission ($N_2O_{DIRECT}$) and indirect emission ($N_2O_{INDIRECT}$). To calculate $N_2O$ emissions, emission factor was used default of IPCC and activity data was used the food, agricultural, forestry and fisheries statistical yearbook of MIFAFF (Ministry for Food, Agriculture, Forestry and Fisheries). It was emitted 8,608 $N_2O$ Mg resulted from direct emission by application of chemical fertilizer and animal manure, input in n-fixation crops and input of crop residues and emissions converted $N_2O$ into $CO_2$ equivalent was 2,668 $CO_2$-eq Gg. Indirect emission as $N_2O_{(G)}$ (atmospheric deposition of $NH_3$ and $NO_X$) and $N_2O_{(L)}$ (leaching and runoffs) were 4,567 and 6,013 $N_2O$ Mg and emissions converted $N_2O$ into $CO_2$ equivalent were 1,416 and 1,864 $CO_2$-eq Gg, respectively. Total $N_2O$ emission in Korea agricultural soil in 2009 was 5,948 $CO_2$-eq Gg.

A Study on the Comparison of Emission Factor Method and CEMS (Continuous Emission Monitoring System) (배출계수법과 연속자동측정법에 의한 배출량 비교 연구)

  • Jang, Kee-Won;Lee, Ju-Hyoung;Jung, Sung-Woon;Kang, Kyoung-Hee;Hong, Ji-Hyung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.5
    • /
    • pp.410-419
    • /
    • 2009
  • Generally, air pollutant emission at workplace is estimated by two methods: indirect methods using emission factors and direct methods based on CEMS (Continuous Emission Monitoring System). CAPSS (Clean Air Policy Support System) is a representative indirect method and the national air pollutant database of Korea. However, characteristics of some workplaces may create a gap between CAPSS and CEMS data. For improving of emission data accuracy, emission data of CEMS (named CleanSYS) equipped at 138 target workplaces were compared with those of CAPSS. As a result, $SO_x$ and $PM_{10}$ emission levels obtained by CAPSS were lower than those of CleanSYS. $SO_x$ and $PM_{10}$emission ratios were 61.5% and 71.2% lower respectively, showing the biggest gaps. On the other hand, $NO_x$ emission of CAPSS was higher by 10.4%. $SO_x$ showed the biggest difference in 'Energy industry combustion' and $NO_x$ did in 'Production Process' within the SCC category. $PM_{10}$ presented a large gap in 'Manufacturing industry combustion.' The differences in $SO_x$ between the two systems occurred because some large-size facilities lack pollution controllers or efficient pollution controllers. Based on this study, CAPSS emission database of Korea will improve accuracy through adopting CEMS emission system, which enables more efficient national atmospheric policies and workplace management.

Life cycle impact assessment of the environmental infrastructures in operation phase: Case of an industrial waste incineration plant

  • Kim, Hyeong-Woo;Kim, Kyeong-Ho;Park, Hung-Suck
    • Environmental Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.266-276
    • /
    • 2017
  • A life cycle impact assessment was applied in an industrial waste incineration plant to evaluate the direct and indirect environmental impacts based on toxicity and non-toxicity categories. The detailed life cycle inventory of material and energy inputs and emission outputs was compiled based on the realistic data collected from a local industrial waste incineration plant, and the Korean life cycle inventory and ecoinvent database. The functional unit was the treatment of 1 tonne of industrial waste by incineration and the system boundary included the incineration plant and landfilling of ash. The result on the variation of the impact by the unit processes showed that the direct impact was decreased by 79.3, 71.6, and 90.1% for the processes in a semi dry reactor, bag filter, and wet scrubber, respectively. Considering the final impact produced from stack, the toxicity categories comprised 91.7% of the total impact. Among the toxicity impact categories, the impact in the eco-toxicity category was most significant. A separate estimation of the impact due to direct and indirect emissions showed that the direct impact was 97.7% of the total impact. The steam recovered from the waste heat of the incineration plant resulted in a negative environmental burden.