현대적인 프로세서들은 그 성능을 높이기 위해서 분기 예측과 같은 투기적인 방식으로 가용한 ILP 즉 명령어 수준의 병렬성을 추구한다. 전통적으로, 분기 방향은 2-단계 예측기를 사용하여 아주 높은 비율의 정확도로 예측이 가능하고, 분기 타겟 주소는 BTB를 사용하여 예측한다. 간접 분기를 제외한 모든 분기들은 그 자신의 타겟 주소가 유일하기 때문에 BTB로 거의 정확하게 예측되지만, 간접 분기는 그 타겟 주소가 동적으로 수시로 달라지기 때문에 예측하기가 매우 어렵다. 일반적으로, 분기 방향을 예측하는 기술을 간접 분기의 타겟 주소를 예측하는데 적용하여 전통적인 BTB 보다 훨씬 좋은 정확도를 얻고 있다. 본 논문에서는 간접 분기 명령과 이와 데이터 종속적인 관계를 갖고 있는 이 간접 분기 명령 보다 훨씬 앞서 수행되는 명령어의 레지스터 내용을 결합하여 간접 분기의 타겟을 예측하는 전혀 새로운 방법을 제안한다. 제안된 방식의 효율성을 검증하기 위해 심플스칼라 시뮬레이터 상에서 제안된 예측기를 구현하고 SPEC 벤치마크를 시뮬레이션하여, 수시로 바뀌는 간접분기의 타겟을 거의 완벽하게 예측할 수 있음을 보이고, 기존의 다른 어떤 방법보다도 우수한 결과임을 보인다.
Modern superscalar processors exploit Instruction Level Parallelism to achieve high performance by speculative techniques such as branch prediction. The indirect branch target prediction is very difficult compared to the prediction of direct branch target and branch direction, since it has dynamically polymorphic target. We present a accurate and hardware-efficient indirect branch target predictor. It can reduce the tags which has to be stored in the Indirect Branch Target Cache without a sacrifice of the prediction accuracy. We implement the proposed scheme on SimpleScalar and show the efficiency running SPEC95 benchmarks.
간접 분기 명령은 현대적인 고성능 프로세서의 ILP를 제한하는 가장 심각한 장애 요인 중 하나이다. 다른 분기 명령들과는 다르게 간접 분기는 그 타켓 주소가 동적으로 다형태로 변하기 때문에 이를 예측하기 매우 어려우며, 투기적 실행 방식을 사용하는 대부분의 현대적인 고성능 프로세서에서는 예측이 잘못되는 경우에 많은 수행 사이클 지연이 일어나게 되어 프로세서의 성능이 크게 떨어지게 된다. 우리는 예측 정확도가 아주 뛰어난 새로운 개념의 간접 분기 예측 방식 즉, 간접 분기 명령과 이와 데이터 종속 관계를 가진 이 명령어 보다 훨씬 앞서 수행되는 명령어의 레지스터 내용을 결합시켜 간접 분기의 타켓을 예측해내는 방식을 제안하였다. 1K의 예측기를 사용하는 경우에 98.92%의 예측 정확도를 보이고, 8K의 크기를 사용하면 거의 완벽한 99.95%의 정확도를 보인다. 그러나 지금까지 제안된 모든 예측기가 그러하듯이 예상 타켓 주소와 함께 앨리어싱 문제를 완화시키기 위한 태그를 저장하기 위한 하드웨어 오버헤드가 크다는 단점을 안고 있다. 그러므로 본 논문에서는 예측 정확 도의 손실없이도 예측기의 하드웨어 오버헤드를 최소한으로 줄이는 방법을 제안한다. 실험 결과로써 태그 저장에 따른 하드웨어를 성능 손실 없이 약 60%를 줄일 수 있으며, 0.1%의 손실을 감수하면 약 80%까지 줄일 수 있다. 또한 부분 타켓 저장으로 인한 성능 손실 없이 타켓 주소 저장에 따른 하드웨어를 약 35% 절약할 수 있으며, 1.11%의 손실을 감수하면 약 45%까지 절약할 수 있다.
함수 복귀 예측은 이론적으로 오버플로가 발생하지 않는 한도 내에서 100%의 정확도를 보여야 한다. 하지만, 투기적 실행을 지원하는 현대 마이크로프로세서 환경 하에서는 잘못된 실행 경로로의 수행 결과를 무효화 할 때 RAS의 오염이 발생하며, 이는 함수 복귀 주소의 예측 실패로 이어진다. 본 논문에서는 이러한 RAS의 오염을 방지하기 위하여 RAS 재명명 기법을 제안한다. RAS 재명명 기법은 RAS의 스택을 소프트 스택과 하드 스택으로 나누어 관리한다. 소프트 스택은 투기적 실행에 의한 데이터의 변경을 복구할 수 있는 항목을 관리하고, 하드 스택은 소프트 스택의 크기 제한으로 겹쳐쓰기가 일어나는 데이터 가운데 이후에 재사용될 데이터를 관리하는 구조로 구성된다. 제안된 기법을 모의실험 한 결과, RAS 오염방지 기법이 적용되지 않은 시스템과 비교하여 함수 복귀 예측 실패를 약 1/90로 감소시켰으며, 최대 6.95%의 IPC 향상을 가져왔다.
Armaghani, Danial Jahed;Mirzaei, Fatemeh;Toghroli, Ali;Shariati, Ali
Geomechanics and Engineering
/
제22권5호
/
pp.397-414
/
2020
In this paper, practical predictive models for soil shear strength parameters are proposed. As cohesion and internal friction angle are of essential shear strength parameters in any geotechnical studies, we try to predict them via artificial neural network (ANN) and neuro-imperialism approaches. The proposed models was based on the result of a series of consolidated undrained triaxial tests were conducted on reinforced sandy soil. The experimental program surveys the increase in internal friction angle of sandy soil due to addition of polypropylene fibers with different lengths and percentages. According to the result of the experimental study, the most important parameters impact on internal friction angle i.e., fiber percentage, fiber length, deviator stress, and pore water pressure were selected as predictive model inputs. The inputs were used to construct several ANN and neuro-imperialism models and a series of statistical indices were calculated to evaluate the prediction accuracy of the developed models. Both simulation results and the values of computed indices confirm that the newly-proposed neuro-imperialism model performs noticeably better comparing to the proposed ANN model. While neuro-imperialism model has training and test error values of 0.068 and 0.094, respectively, ANN model give error values of 0.083 for training sets and 0.26 for testing sets. Therefore, the neuro-imperialism can provide a new applicable model to effectively predict the internal friction angle of fiber-reinforced sandy soil.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.