• 제목/요약/키워드: Indirect Branch Prediction

검색결과 5건 처리시간 0.02초

간접 분기의 타형태 타겟 주소의 정확한 예측 (Accurate Prediction of Polymorphic Indirect Branch Target)

  • 백경호;김은성
    • 전자공학회논문지CI
    • /
    • 제41권6호
    • /
    • pp.1-11
    • /
    • 2004
  • 현대적인 프로세서들은 그 성능을 높이기 위해서 분기 예측과 같은 투기적인 방식으로 가용한 ILP 즉 명령어 수준의 병렬성을 추구한다. 전통적으로, 분기 방향은 2-단계 예측기를 사용하여 아주 높은 비율의 정확도로 예측이 가능하고, 분기 타겟 주소는 BTB를 사용하여 예측한다. 간접 분기를 제외한 모든 분기들은 그 자신의 타겟 주소가 유일하기 때문에 BTB로 거의 정확하게 예측되지만, 간접 분기는 그 타겟 주소가 동적으로 수시로 달라지기 때문에 예측하기가 매우 어렵다. 일반적으로, 분기 방향을 예측하는 기술을 간접 분기의 타겟 주소를 예측하는데 적용하여 전통적인 BTB 보다 훨씬 좋은 정확도를 얻고 있다. 본 논문에서는 간접 분기 명령과 이와 데이터 종속적인 관계를 갖고 있는 이 간접 분기 명령 보다 훨씬 앞서 수행되는 명령어의 레지스터 내용을 결합하여 간접 분기의 타겟을 예측하는 전혀 새로운 방법을 제안한다. 제안된 방식의 효율성을 검증하기 위해 심플스칼라 시뮬레이터 상에서 제안된 예측기를 구현하고 SPEC 벤치마크를 시뮬레이션하여, 수시로 바뀌는 간접분기의 타겟을 거의 완벽하게 예측할 수 있음을 보이고, 기존의 다른 어떤 방법보다도 우수한 결과임을 보인다.

정확하고 효율적인 간접 분기 예측기 설계 (Design of Accurate and Efficient Indirect Branch Predictor)

  • 백경호;김은성
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2005년도 추계종합학술대회
    • /
    • pp.1083-1086
    • /
    • 2005
  • Modern superscalar processors exploit Instruction Level Parallelism to achieve high performance by speculative techniques such as branch prediction. The indirect branch target prediction is very difficult compared to the prediction of direct branch target and branch direction, since it has dynamically polymorphic target. We present a accurate and hardware-efficient indirect branch target predictor. It can reduce the tags which has to be stored in the Indirect Branch Target Cache without a sacrifice of the prediction accuracy. We implement the proposed scheme on SimpleScalar and show the efficiency running SPEC95 benchmarks.

  • PDF

효율적인 데이터 종속 기반의 간접 분기 예측기 (Efficient Indirect Branch Predictor Based on Data Dependence)

  • 백경호;김은성
    • 전자공학회논문지CI
    • /
    • 제43권4호
    • /
    • pp.1-14
    • /
    • 2006
  • 간접 분기 명령은 현대적인 고성능 프로세서의 ILP를 제한하는 가장 심각한 장애 요인 중 하나이다. 다른 분기 명령들과는 다르게 간접 분기는 그 타켓 주소가 동적으로 다형태로 변하기 때문에 이를 예측하기 매우 어려우며, 투기적 실행 방식을 사용하는 대부분의 현대적인 고성능 프로세서에서는 예측이 잘못되는 경우에 많은 수행 사이클 지연이 일어나게 되어 프로세서의 성능이 크게 떨어지게 된다. 우리는 예측 정확도가 아주 뛰어난 새로운 개념의 간접 분기 예측 방식 즉, 간접 분기 명령과 이와 데이터 종속 관계를 가진 이 명령어 보다 훨씬 앞서 수행되는 명령어의 레지스터 내용을 결합시켜 간접 분기의 타켓을 예측해내는 방식을 제안하였다. 1K의 예측기를 사용하는 경우에 98.92%의 예측 정확도를 보이고, 8K의 크기를 사용하면 거의 완벽한 99.95%의 정확도를 보인다. 그러나 지금까지 제안된 모든 예측기가 그러하듯이 예상 타켓 주소와 함께 앨리어싱 문제를 완화시키기 위한 태그를 저장하기 위한 하드웨어 오버헤드가 크다는 단점을 안고 있다. 그러므로 본 논문에서는 예측 정확 도의 손실없이도 예측기의 하드웨어 오버헤드를 최소한으로 줄이는 방법을 제안한다. 실험 결과로써 태그 저장에 따른 하드웨어를 성능 손실 없이 약 60%를 줄일 수 있으며, 0.1%의 손실을 감수하면 약 80%까지 줄일 수 있다. 또한 부분 타켓 저장으로 인한 성능 손실 없이 타켓 주소 저장에 따른 하드웨어를 약 35% 절약할 수 있으며, 1.11%의 손실을 감수하면 약 45%까지 절약할 수 있다.

이중 함수 복귀 스택의 활용을 통한 간접 분기 명령어의 예측 정확도 향상 기법 (The Enhancement of Indirect Branch Prediction Accuracy via Double Return Address Stack)

  • 곽종욱;김주환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(A)
    • /
    • pp.494-497
    • /
    • 2011
  • 함수 복귀 예측은 이론적으로 오버플로가 발생하지 않는 한도 내에서 100%의 정확도를 보여야 한다. 하지만, 투기적 실행을 지원하는 현대 마이크로프로세서 환경 하에서는 잘못된 실행 경로로의 수행 결과를 무효화 할 때 RAS의 오염이 발생하며, 이는 함수 복귀 주소의 예측 실패로 이어진다. 본 논문에서는 이러한 RAS의 오염을 방지하기 위하여 RAS 재명명 기법을 제안한다. RAS 재명명 기법은 RAS의 스택을 소프트 스택과 하드 스택으로 나누어 관리한다. 소프트 스택은 투기적 실행에 의한 데이터의 변경을 복구할 수 있는 항목을 관리하고, 하드 스택은 소프트 스택의 크기 제한으로 겹쳐쓰기가 일어나는 데이터 가운데 이후에 재사용될 데이터를 관리하는 구조로 구성된다. 제안된 기법을 모의실험 한 결과, RAS 오염방지 기법이 적용되지 않은 시스템과 비교하여 함수 복귀 예측 실패를 약 1/90로 감소시켰으며, 최대 6.95%의 IPC 향상을 가져왔다.

Indirect measure of shear strength parameters of fiber-reinforced sandy soil using laboratory tests and intelligent systems

  • Armaghani, Danial Jahed;Mirzaei, Fatemeh;Toghroli, Ali;Shariati, Ali
    • Geomechanics and Engineering
    • /
    • 제22권5호
    • /
    • pp.397-414
    • /
    • 2020
  • In this paper, practical predictive models for soil shear strength parameters are proposed. As cohesion and internal friction angle are of essential shear strength parameters in any geotechnical studies, we try to predict them via artificial neural network (ANN) and neuro-imperialism approaches. The proposed models was based on the result of a series of consolidated undrained triaxial tests were conducted on reinforced sandy soil. The experimental program surveys the increase in internal friction angle of sandy soil due to addition of polypropylene fibers with different lengths and percentages. According to the result of the experimental study, the most important parameters impact on internal friction angle i.e., fiber percentage, fiber length, deviator stress, and pore water pressure were selected as predictive model inputs. The inputs were used to construct several ANN and neuro-imperialism models and a series of statistical indices were calculated to evaluate the prediction accuracy of the developed models. Both simulation results and the values of computed indices confirm that the newly-proposed neuro-imperialism model performs noticeably better comparing to the proposed ANN model. While neuro-imperialism model has training and test error values of 0.068 and 0.094, respectively, ANN model give error values of 0.083 for training sets and 0.26 for testing sets. Therefore, the neuro-imperialism can provide a new applicable model to effectively predict the internal friction angle of fiber-reinforced sandy soil.