• Title/Summary/Keyword: Indian mustard

Search Result 19, Processing Time 0.029 seconds

Identification of New Source of Resistance to Powdery Mildew of Indian Mustard and Studying Its Inheritance

  • Nanjundan, Joghee;Manjunatha, Channappa;Radhamani, Jalli;Thakur, Ajay Kumar;Yadav, Rashmi;Kumar, Arun;Meena, Mohan Lal;Tyagi, Rishi Kumar;Yadava, Devender Kumar;Singh, Dhiraj
    • The Plant Pathology Journal
    • /
    • v.36 no.2
    • /
    • pp.111-120
    • /
    • 2020
  • Powdery mildew of Indian mustard (Brassica juncea), caused by Erysiphe cruciferarum, is emerging as major problem in India. All the Indian mustard cultivars presently grown in India are highly susceptible to powdery mildew and so far no resistance source has been reported. In this study, with an aim to identify resistant source, 1,020 Indian mustard accessions were evaluated against E. cruciferarum PMN isolate, at Wellington, The Nilgiris, Tamil Nadu, India under natural hot spot conditions. The study identified one accession (RDV 29) with complete resistance against E. cruciferarum PMN isolate for the first time, which was consistent in five independent evaluations. Genetic analysis of F1, F2 and backcross populations obtained from the cross RSEJ 775 (highly susceptible) × RDV 29 (highly resistant) for two season revealed that the resistance is governed by two genes with semi-dominant and gene dosage effect. Further, a new disease rating system using six scales (0, 1, 2, 3, 4, and 5) has also been proposed in this study to score powdery mildew based on progress of fungal growth in different plant parts of the F2 population. The outcome of this study viz. newly identified powdery mildew-resistant Indian mustard accession (RDV 29), information on inheritance of resistance and the newly developed disease rating scale will provide the base for development of powdery mildew-resistant cultivars of Indian mustard.

A Comparison of Electrical Stimulation for Electrodic and EDTA-Enhanced Phytoremediation of Lead using Indian Mustard (Brassica juncea)

  • Lim, Jae-Min;Jin, Biao;Butcher, David J.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2737-2740
    • /
    • 2012
  • The use of plants to remove toxic metals from soil (phytoremediation) is emerging as a cost-effective alternative to conventional methods for the removal of heavy metals from contaminated soil. Indian mustard (Brassica juncea) was used as the plant to accumulate high tissue concentrations of lead when grown in contaminated soil. For this study, the application of an electric field combined effectively with EDTA-enhanced phytoremediation. A stimulation of direct and alternating electric potential was compared and EDTA-enhanced phytoremediation of lead using Indian mustard has been performed. The effects of experimental parameters such as operating voltage with different concentration of EDTA, the number of graphite electrodes, and cultivation period on the removal of toxic metal were studied. Shoot lead accumulations in Indian mustard increased as the concentration of EDTA and dc electric potential was increased. Two to four folds was increased when EDTA plus a dc electric potential was applied, compared to an ac electric potential. The maximum lead accumulation in the shoots was achieved by applying EDTA plus dc electric potential with 6 graphite electrodes.

Lead Induced Organic Acid Exudation and Citrate Enhanced Pb Uptake in Hydroponic System

  • Kim, Kwon-Rae;Owens, Gary;Naidu, Ravi;Kwon, Soon-Ik;Kim, Kye-Hoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.2
    • /
    • pp.146-157
    • /
    • 2009
  • The influence of Pb-citrate complex formation on Pb uptake and the effect of Pb on organic acid exudation were investigated using four plant species, viz., sunflower (Helianthus annuus L), Indian mustard (Brassica juncea), canola (Brassica napus) and vetiver grass (Vetiveria zizanioides) under hydroponic conditions. Seedlings were exposed to different levels of Pb and Pb-citrate for 24 hrs and subsequently Pb distributions in plant shoot, root and hydroponic solution were measured. The dissolved organic carbon (DOC) concentration generally decreased as the concentration of Pb in the hydroponic solution increased. In contrast to DOC, the total organic acid concentrations exuded from Indian mustard roots significantly increased (424 to 6656 mg $kg^{-1}$) with increased Pb treatment, implying that exuding organic acids were involved in Pb accumulation in Indian mustard. The complexation of Pb with citrate enhanced Pb accumulation in the above ground portions. Lead concentration in Indian mustard increased from 2.05 mg $kg^{-1}$ to 6.42 mg $kg^{-1}$ when the concentration of citrate in solution increased from 0 to 50 mg $L^{-1}$. This result showed enhanced translocation of Pb from root to shoot with observation of transfer coefficient ($K_t$) increase from 2.03E-3 to 5.72E-3.

Adsorption isotherm and kinetics analysis of hexavalent chromium and mercury on mustard oil cake

  • Reddy, T. Vishnuvardhan;Chauhan, Sachin;Chakraborty, Saswati
    • Environmental Engineering Research
    • /
    • v.22 no.1
    • /
    • pp.95-107
    • /
    • 2017
  • Adsorption equilibrium and kinetic behavior of two toxic heavy metals hexavalent chromium [Cr(VI)] and mercury [Hg(II)] on mustard oil cake (MOC) was studied. Isotherm of total chromium was of concave type (S1 type) suggesting cooperative adsorption. Total chromium adsorption followed BET isotherm model. Isotherm of Hg(II) was of L3 type with monolayer followed by multilayer formation due to blockage of pores of MOC at lower concentration of Hg(II). Combined BET-Langmuir and BET-Freundlich models were appropriate to predict Hg(II) adsorption data on MOC. Boyd's model confirmed that external mass transfer was rate limiting step for both total chromium and Hg(II) adsorptions with average diffusivity of $1.09{\times}10^{-16}$ and $0.97m^2/sec$, respectively. Desorption was more than 60% with Hg(II), but poor with chromium. The optimum pH for adsorptions of total chromium and Hg(II) were 2-3 and 5, respectively. At strong acidic pH, Cr(VI) was adsorbed by ion exchange mechanism and after adsorption reduced to Cr(III) and remained on MOC surface. Hg(II) removal was achieved by complexation of $HgCl_2$ with deprotonated amine ($-NH_2$) and carboxyl (COO-) groups of MOC.

In vitro Methanogenesis and Fermentation of Feeds Containing Oil Seed Cakes with Rumen Liquor of Buffalo

  • Kumar, Ravindra;Kamra, D.N.;Agarwal, Neeta;Chaudhary, L.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.8
    • /
    • pp.1196-1200
    • /
    • 2007
  • Eight feeds (mixture of wheat straw and oil seed cakes in 3:1 ratio) were evaluated for methane emission and fermentation pattern with buffalo rumen liquor as inoculum in an in vitro gas production test. The cakes tested were groundnut cake (GNC), soybean cake (SBC), mustard seed cake (MSC), cotton seed cake (CSC), karanj seed cake expeller extracted (KCEE), karanj seed cake solvent extracted (KCSE), caster bean cake expeller extracted (CBCEE) and caster bean cake solvent extracted (CBCSE). The gas production (ml/g dry matter) was significantly higher with SBC and MSC followed by CSC, GNC, KCSE, KCEE, CBCSE and was the lowest with CBCEE. Methane emission was significantly lower with KCEE, KCSE, CBCEE, CBCSE (20.32- 22.43 ml/g DM) than that with SBC, GNC, CSC (27.34-31.14 ml/g DM). Mustard seed cake was in-between the two groups of oil cakes in methane production. In vitro true digestibility was highest with SBC followed by GNC, CSC, MSC, KCSE, KCEE, CBCSE and CECEE. Ammonia nitrogen level was positively correlated with the amount of protein present in the cake. Total holotrich protozoa were significantly higher with SBC, whereas, large spirotrich protozoa tended to be lower than with other cakes. The counts of small spirotrich and total protozoa were similar with all the cakes. Total volatile fatty acid production and acetate to propionate ratio were significantly higher with SBC and significantly lower with KCEE as compared to the other cakes. Among the conventional oil cakes tested in the present experiment (GNC, SBC, MSC and CSC), mustard seed cake-based feed produced the minimum methane without affecting other fermentation characteristics adversely.

Effect of Sources of Supplementary Protein on Intake, Digestion and Efficiency of Energy Utilization in Buffaloes Fed Wheat Straw Based Diets

  • Mehra, U.R.;Khan, M.Y.;Lal, Murari;Hasan, Q.Z.;Das, Asit;Bhar, R.;Verma, A.K.;Dass, R.S.;Singh, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.5
    • /
    • pp.638-644
    • /
    • 2006
  • Sixteen adult male buffaloes (average body weight $443{\pm}14kg$) were equally distributed into four groups in an experiment to study the effect of supplementary protein sources on energy utilization efficiency in buffaloes fed a wheat straw-based diet. The animals in the control group were offered a basal diet composed of 700 g deoiled ground nut cake and ad libitum wheat straw. Animals of other groups were offered 1.8 kg of soyabean meal (SBM), linseed meal (LSM) or mustard cake (MC) along with the basal diet. Protein supplementation increased the digestibility of DM (p<0.01), OM (p<0.01) CP (p<0.01) and CF (p<0.05). Maximum CP digestibility was observed on SBM, followed by LSM and MC when compared to the control. Total DMI and DOMI was significantly (p<0.01) higher in protein supplemented groups with no differences between treatment groups. Digestible crude protein (DCP) intake and N balance were significantly (p<0.01) different between the groups; maximum response was obtained with SBM supplementation, followed by LSM and MC. Faecal energy was significantly (p<0.01) lower in SBM and LSM groups in comparison to other groups. Methane production (% DEI) was significantly (p<0.05) lower on the SBM treatment. Metabolizable energy (ME) intake increased significantly due to protein supplementation. Metabolizable energy intake (MEI) of animals in the MC group was less than LSM and SBM. Energy balance was increased significantly (p<0.01) due to protein supplementation and within supplement variation was also significant with maximum balance in SBM followed by LSM and MC groups. Protein supplementation significantly (p<0.05) increased the digestibility and metabolizability of energy from whole ration. Metabolizable energy (ME) content (Mcal/kg DM) of SBM, LSM and MC was 4.49, 3.56 and 2.56, respectively. It was concluded that protein supplementation of wheat straw increased intake, digestibility and metabolizability of energy and maximum response could be obtained when soybean meal was used as a supplement.

Influence of formulated organic Plant tissue culture medium in the shoot regeneration study of Brassica juncea (l.) - Indian mustard

  • Kashyap, Suman;Tharannum, Seema;R, Taarini
    • Journal of Plant Biotechnology
    • /
    • v.46 no.2
    • /
    • pp.114-118
    • /
    • 2019
  • Efficient protocol for plant shoot regeneration of Brassica juncea L. CZERN was established by using organic media components and growth stimulating factors of the vermicompost and coelomic fluids. Formulated organic plant tissue culture media (Vermicompost (30%) extracts supplemented with 20 mL/L coelomic fluid) have shown maximum shoot regeneration when compared with the Murashige and Skoog (MS) medium, which were supplemented with 1 mg/L 6-benzyladenine (BA) and 0.1 mg/L of Naphthaleneacetic acid (NAA). Cotyledon explants produced the highest shoot regeneration frequency from fourday-old germinated seedlings in comparison with non-germinated seedlings. The vermicompost extracts have proved to be the best organic plant growth media to induce shoots from cotyledons compared to the MS media. Statistically significant difference (P = 0.008) for the root length, shoot length (P=0.000350) and the leaves (P=0.375) of the mustard plantlets were analyzed successfully. The survival rate was 98% in the mustard cotyledons on the Vermicompost extract media and 63% on MS media respectively. The coelomic fluid also is much suitable to induce shoots from cotyledons at lower concentrations. It was also shown that the vermicompost extract, which comprised of humic acids along with coelomic fluid, affected shoot regeneration from the cotyledons. An efficient and organic shoot regeneration study was standardized and it can be applicable in the improvement of the economically important crops.

Anxiolytic-like activity of leaf extract of traditionally used Indian-Mustard (Brassica juncea) in diabetic rats

  • Thakur, Ajit Kumar;Chatterjee, Shyam Sunder;Kumar, Vikas
    • CELLMED
    • /
    • v.3 no.1
    • /
    • pp.7.1-7.7
    • /
    • 2013
  • Brassica juncea is a polyphenols enriched edible plant, with diverse medicinal uses of different parts of which have been mentioned in the Ayurveda. The effects of 10 daily oral doses (100, 200, and 400 mg/kg/day) of a methanolic Brassica juncea leaf extract in rat models of anxiety using nondiabetic and alloxan-diabetic rats were quantified. In all the three behavioural tests used, i.e. elevated plus maze, open field, and social interaction tests, anxiolytic-like activity of the extract was observed in the diabetic animals only. Quantitatively, the efficacy of the highest tested dose of the extract in these tests was always less than those observed after its lower ones. These observations provide further experimental evidences for the conviction that Brassica vegetables could as well be useful for combating diabetes associated mental health problems.

Catalytic Supplementation of Urea-molasses on Nutritional Performance of Male Buffalo (Bubalus bubalis) Calves

  • Sahoo, A.;Elangovan, A.V.;Mehra, U.R.;Singh, U.B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.5
    • /
    • pp.621-628
    • /
    • 2004
  • Twenty male buffalo calves of 6-9 months of age (average body weight, 97 kg) were randomly allocated into two main groups of four (control) and sixteen (supplemented) calves. The supplemented group was further divided in to four equal sub-groups, with the two groups supplemented with a liquid preparation of urea-molasses, UML1, containing fish meal and UML2, containing formaldehyde treated deoiled mustard cake (FDMC) and the other two, with a semi-solid preparation, UMC1 with FDMC and deoiled rice bran (DORB) contributing similar level of CP as in UML2 and UMC2 with double the level of FDMC to that in UMC1. The control group was fed with DORB along with ad libitum wheat straw at 40:60 ratios. The rest of the groups were fed on the above diet supplemented with 500 g (as fed basis) of urea-molasses preparations. The experimental feeding was carried out for 24 weeks including a metabolism trial towards the end of experimental feeding. Daily feed intake and fortnightly change in live weight were also recorded during the study. Catalytic supplementation of 500 g urea-molasses induced 8-25% higher voluntary feed intake of wheat straw, resulting in 15-25% higher DM and OM intake. The digestibility of DM, OM, total carbohydrate, NDF, ADF, hemicellulose and cellulose in all the dietary groups were comparable. The CP digestibility of calves in supplemented groups were higher (p<0.05) than the control group. The balance of nutrients, viz. N, Ca and P, was also higher in the supplemented groups. Significantly higher intake of digestible CP coupled with other digestible nutrients attributed to higher TDN (1.67-1.78 vs. 1.37 kg) and ME (5.94-6.31 vs. 4.87 Mcal) intake in urea-molasses supplemented groups which resulted in higher live weight gain compared to that in control group (p<0.01). Between the supplements, UML2 and UMC2 faired non-significantly, indicating formalin treated mustard cake as a suitable replacement to fishmeal in the supplement. The overall ranking based on intake and digestibility of nutrients, live weight gain, economic evaluation and input-output relationship revealed that the rations with UML2 and UMC1 to be of greater value compared to other types. From the study it can be concluded that young ruminants can be reared successfully on a basal diet of deoiled rice bran and wheat straw supplemented with cheaper urea-molasses-mineral mix.

Leucaena Seeds as Protein Supplement in the Rations of Growing Sheep

  • Singh, Sultan;Kundu, S.S.;Negi, A.S.;Gupta, S.K.;Singh, N.P.;Pachouri, V.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.10
    • /
    • pp.1433-1438
    • /
    • 2002
  • The study was carried out to evaluate leucaena seeds as a protein replacement of mustard seed cake (MSC) in the concentrate mixture of growing lambs. Fifteen owing male lambs (Local${\times}$Corridale) with an average body weight of 16.3 kg were allocated into three dietary treatments (T1, T2, and T3) with five animals in each group. Animals were offered dry mixed grass, berseem hay and concentrate mixture to meet their nutrient requirements. In concentrate mixture of T1, (Control) MSC was used as protein source, while in T2 and T3 groups, 25 and 50% of MSC was replaced by leucaena leucocephala seeds. On completion of three months (90 days) of feeding, a digestion cum-metabolism trial was conducted to determine DMI, nutrient utilization, and nitrogen balance. Changes in body weight were recorded at 15 day internals and eating patterns were recorded for 3 consecutive days at the end of the feeding trial. MSC had higher CP contents than leucaena seeds (27.0%). Mimosine contents in leucaena seeds were 1.1 compared to 0.2 and 0.4% in concentrate mixture of T2 and T3 group, respectively. Dry matter intake varied non-significantly ($79.3{\pm}1.2$ to $83.4{\pm}1.3g/kg$ $w^{0.75}$) across the dietary treatments. Digestibility of DM and cell wall polysaccharides (NDF, ADF. Cellulose and hemicellulose) were comparable, however CP digestibility was relatively lower in leucaena luecocephala seeds based groups (T2 $45.5{\pm}1.7$ and T3 $46.7{\pm}3.5$) compared to MSC supplemented group (T1 $47.7{\pm}0.9%$). The growth rate of lambs was non-significantly higher in T1 ($79.2{\pm}5.4$) compared to T2 ($73.8{\pm}8.8$) and T3 ($73.9{\pm}7.0$), respectively. The animals were in positive nitrogen balance and N-balance varied from 1.8 to 2.9 g/d across treatment groups. The eating rate (% of total offered) of concentrate up-to 15 min was relatively higher in T1 (82.4) than T2 (74.2) and T3 (77.8%). However no effect of leucaena seeds was recorded on total DMI of animals. The results of the study revealed that the inclusion of up to 50% leucaena seeds, as protein source in concentrate mixture of lambs had no adverse effect on DMI, nutrient utilization, eating patterns, nitrogen balance and growth performance of lambs.