DOI QR코드

DOI QR Code

Lead Induced Organic Acid Exudation and Citrate Enhanced Pb Uptake in Hydroponic System

  • Kim, Kwon-Rae (Centre for Environmental Risk Assessment and Remediation, University of South Australia) ;
  • Owens, Gary (Centre for Environmental Risk Assessment and Remediation, University of South Australia) ;
  • Naidu, Ravi (Centre for Environmental Risk Assessment and Remediation, University of South Australia) ;
  • Kwon, Soon-Ik (Department of Agricultural Environment, National Academy of Agricultural Science) ;
  • Kim, Kye-Hoon (Department of Environmental Horticulture, University of Seoul)
  • Published : 2009.06.30

Abstract

The influence of Pb-citrate complex formation on Pb uptake and the effect of Pb on organic acid exudation were investigated using four plant species, viz., sunflower (Helianthus annuus L), Indian mustard (Brassica juncea), canola (Brassica napus) and vetiver grass (Vetiveria zizanioides) under hydroponic conditions. Seedlings were exposed to different levels of Pb and Pb-citrate for 24 hrs and subsequently Pb distributions in plant shoot, root and hydroponic solution were measured. The dissolved organic carbon (DOC) concentration generally decreased as the concentration of Pb in the hydroponic solution increased. In contrast to DOC, the total organic acid concentrations exuded from Indian mustard roots significantly increased (424 to 6656 mg $kg^{-1}$) with increased Pb treatment, implying that exuding organic acids were involved in Pb accumulation in Indian mustard. The complexation of Pb with citrate enhanced Pb accumulation in the above ground portions. Lead concentration in Indian mustard increased from 2.05 mg $kg^{-1}$ to 6.42 mg $kg^{-1}$ when the concentration of citrate in solution increased from 0 to 50 mg $L^{-1}$. This result showed enhanced translocation of Pb from root to shoot with observation of transfer coefficient ($K_t$) increase from 2.03E-3 to 5.72E-3.

Keywords

References

  1. Cheng, W., Coleman, D. C., Caroll, R., and Hoffman, C. A. (1994) Investigating short term carbon flows in the rhizosphere of different plant species, using isotopic trapping, Agron. J. 86, 782-788 https://doi.org/10.2134/agronj1994.00021962008600050007x
  2. Jones, D. L. (1998) Organic acids in the rhizosphere - a critical review, Plant and Soil. 205, 25-44 https://doi.org/10.1023/A:1004356007312
  3. Nye, P. H. (1981) pH changes across the rhizosphere induced by roots, Plant and Soil. 61, 7-26 https://doi.org/10.1007/BF02277359
  4. Baziramakenga, R., Simard, R. R., and Leroux, G. D. (1995) Determination of organic acids in soil extracts by ion chromatography, Soil Biol. Biochem. 27(3), 349-356 https://doi.org/10.1016/0038-0717(94)00178-4
  5. Nigam, R., Srivastava, S., Parakash, S., and Srivastava, M. M. (2001) Cadmium mobilization and plant availability-the impact of organic acids commonly exuded from roots, Plant and Soil. 230,107-113 https://doi.org/10.1023/A:1004865811529
  6. Wu, L. H., Luo, Y. M., Christie, P., and Wong, M. H. (2003) Effects of EDTA and low molecular weight organic acids on soil solution properties of a heavy metal polluted soil, Chemosphere. 50(6), 819-822 https://doi.org/10.1016/S0045-6535(02)00225-4
  7. Onyatta, J. O. and Huang, P. M. (2003) Kinetics of cadmium release from selected tropical soils from Kenya by low-molecular-weight organic acid, Soil Sci. 168(4), 234-252 https://doi.org/10.1097/00010694-200304000-00002
  8. Uren, N. C. and Reisenauer, H. M. (1988) The role of root exudates in nutrient acquisition, Adv. Plant Nut. 3, 79-114
  9. Cieslinski, G., Van Rees, K. C. J., Szmigielska, A. M., Krishnamurti, G. S. R., and Huang, P. M. (1998) Low-molecular-weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation, Plant and Soil. 203, 109-117 https://doi.org/10.1023/A:1004325817420
  10. McFee, W. W. and Kelly, J. M. (1995) Carbon forms and functions in forest soils. Soil Sci. Soc. Am., Madison, USA, pp. 43-62
  11. Strobel, B. W. (2001) Influence of vegetation on low-molecular-weight carboxylic acids in soil solution-a review, Geoderma. 99(3-4), 169-198 https://doi.org/10.1016/S0016-7061(00)00102-6
  12. Cieśliński, G., Rees, K. C. J. V., Szmigielska, A. M., and Huang, P. M. (1997) Low molecular weight organic acids released from roots of durum wheat and flax into sterile nutrient solutions, J. Plant Nut. 20(6), 753-763 https://doi.org/10.1080/01904169709365291
  13. Alloway, B. J. (1990) Heavy metals in soils. Blackie and sons, New York, USA, pp. 7-27
  14. Salt, D. E., Prince, R. C., Baker, A. J. M., Raskin, I., and Pickering, I. J. (1999) Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy, Environ. Sci. Tech. 33, 713-717 https://doi.org/10.1021/es980825x
  15. Siegal, H. (1995) Concepts in metal toxicology: metal ions in biological systems. Dekker, New York, USA, pp. 38-65
  16. Zenk, M. H. (1996) Heavy metal detoxification in higher plants-a review, Gene. 179, 21-30 https://doi.org/10.1016/S0378-1119(96)00422-2
  17. Cobbett, C. S. (2000) Phytochelatin biosynthesis and function in heavy-metal detoxification, Curr. Opin. Plant Biol. 3, 211-216 https://doi.org/10.1016/S1369-5266(00)80067-9
  18. Knight, B., Zhao, F. J., McGrath, S. P., and Shen, Z. G. (1997) Zinc and cadmium uptake by the hyperaccumulator Thlaspi caerulescens in contaminated soils and its effects on the concentration and chemical speciation of metals in soil solution, Plant and Soil. 197, 71-78 https://doi.org/10.1023/A:1004255323909
  19. Wenzel, W. W., Bunkowski, M., Puschenreiter, M., and Horak, O. (2003) Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and excluder plants on serpentine soil, Environ. Poll. 123(1), 131-138 https://doi.org/10.1016/S0269-7491(02)00341-X
  20. Whiting, S. N., Leake, J. R., McGrath, S. P., and Baker, A. J. M. (2001) Zinc accumulation by Thlaspi caerulescens from soils with different Zn availability: a pot study, Plant and Soil. 236, 11-18 https://doi.org/10.1023/A:1011950210261
  21. Krishnamurti, G. S. R., Cieśliński, G., Huang, P. M., and Rees, K. C. J. V. (1997) Kinetics of cadmium release from soils as influenced by organic acids: Implication in cadmium availability, J. Environ. Qual. 26, 271-277 https://doi.org/10.2134/jeq1997.261271x
  22. Naidu, R. and Harter, R. D. (1998) Effect of different organic ligands on cadmium sorption by and extractability from soils, Soil Sci. Soc. Am. J. 62, 644-650 https://doi.org/10.2136/sssaj1998.03615995006200030014x
  23. Reuter, J. H. and Purdue, E. M. (1977) Importance of heavy metal-organic matter interactions in natural waters, Geochim. Cosmodhim. Acta. 41, 325-334 https://doi.org/10.1016/0016-7037(77)90240-X
  24. Kramer, U., Cotter-Howells, J. D., Charnock, J. M., Baker, A. J. M., and Smith, A. A. C. (1996) Free histidine as a metal chelator in plants that accumulate nickel, Nature. 379, 635-638 https://doi.org/10.1038/379635a0
  25. Lee, J., Reeves, R. K., Brooks, R. R., and Jaffre, T. (1978) The relation between nickel and citric acid in some nickel-accumulating plants, Phytochemistry. 17, 1033-1035 https://doi.org/10.1016/S0031-9422(00)94274-2
  26. Sauve, S., Norvell, W. A., McBride, M., and Hendershot, W. (2000) Speciation and complexation of cadmium in extracted soil solutions, Environ. Sci. Tech. 34(2), 291-296 https://doi.org/10.1021/es990202z
  27. Vulkan, R., Zhao, F-J., Barbosa-Jefferson, V., Preston, S., Paton, G. I., Tipping, E., and McGrath, S. P. (2000) Copper speciation and impacts on bacterial biosensors in the pore water of coppercontaminated soils, Environ. Sci. Tech. 34(24), 5115-5121 https://doi.org/10.1021/es0000910
  28. Chen, Z., Kim, K-R., Owens, G., and Naidu, R. (2007). Determination of carboxylic acids from plant root exudates by ion exclusion chromatography- electrospray ionization mass spectrometry, Chromatographia. 67, 113-117
  29. Kim, K-R., Owens, G., and Naidu, R. (2009) Heavy metal distribution, bioaccessibility and phytoavailability in long-term contaminated soils from Lake Macquarie, Australia, Aust. J. Soil Res. 47(2), 166-176 https://doi.org/10.1071/SR08054
  30. Blaylock, M. J., Salt, D. E., Dushenkov, S., Zakharova, O., Gussman, C., Kapulnik, Y., Ensley, B. D., and Raskin, I. (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents, Environ. Sci. Tech. 31(3), 860-865 https://doi.org/10.1021/es960552a
  31. Ebbs, S. D. and Kochian, L. V. (1998) Phytoextraction of Zinc by Oat (Avena sativa), Barley (Hordeum vulgare), and Indian mustard (Brassica juncea), Environ. Sci. Tech. 32, 802-806 https://doi.org/10.1021/es970698p
  32. Raskin, I. and Ensley, B. D. (2000) Phytoremediation of toxic metals. John Wiley & Sons, New York, USA, pp. 89-106
  33. Qin, F., Shan, X-Q., and Wei, B. (2004) Effects of 1low-molecular-weight organic acids and residence time on desorption of Cu, Cd, and Pb from soils, Chemosphere. 57(4), 253-263 https://doi.org/10.1016/j.chemosphere.2004.06.010
  34. Pinton, R., Varanin, Z., and Nannipieri, P. (2001) The rhizosphere. Marcel Dekker Inc, New York, USA, pp. 19-40
  35. Prikryl, A. and Vancura, V. (1980) Root exudates of plants. VI. Wheat root exudation as dependent on growth, concentration gradient of exudates and the presence of bacteria, Plant and Soil. 57, 69-83 https://doi.org/10.1007/BF02139643
  36. Barber, D. A. and Lynch, J. M. (1977) Microbial growth in the rhizosphere, Soil Biol. Biochem. 9, 305-308 https://doi.org/10.1016/0038-0717(77)90001-3
  37. Thurman, E. M. (1985) Organic geochemistry of natural waters. Dordrecht: Martinus Nijhoff. Boston. USA
  38. Hees, P. A. Wv., Lundstrom, U. S., Boren, H., and Allard, B. (1999) Determination of low molecular weight organic acids in soil solution by HPLC, Talanta. 48, 173-179 https://doi.org/10.1016/S0039-9140(98)00236-7
  39. Hees, P. A. Wv., Lundstrom, U. S., and Giesler, R. (2000) Low molecular weight organic acids and their complexes in soil solution-composition, distribution and seasonal variation in three podzolized soils, Geoderma. 94, 173-200 https://doi.org/10.1016/S0016-7061(98)00140-2
  40. Mench, M., Morel, J. L., Guckert, A., and Guillet, B. (1988) Metal binding with root exudates of low molecular weight, J. Soil Sci. 39, 521-527 https://doi.org/10.1111/j.1365-2389.1988.tb01236.x
  41. Mench, M. and Martin, E. (1991) Mobilization of cadmium and other metals from two soils by root exudates of Zea mays L., Nicotiana tabacum L. and Nicotiana rustica L, Plant and Soil. 132, 187-196 https://doi.org/10.1007/BF00010399
  42. Collins, R. N., Merrington, G., McLaughlin, M. J., and Morel, J-L. (2003) Organic ligand and pH effects on isotopically exchangeable cadmium in polluted soils, Soil Sci. Soc. Am. J. 67, 112-121 https://doi.org/10.2136/sssaj2003.1120
  43. Stumm, W. (1986) Coordination interactions between soil solids and water: An aquatic chemist's point of view, Geoderma. 38, 19-30 https://doi.org/10.1016/0016-7061(86)90004-2
  44. Jones, D. L. and Darrah, P. R. (1994) Role of root derived organic acids in the mobilization of nutrients from the rhizosphere, Plant and soil. 166, 247-257 https://doi.org/10.1007/BF00008338
  45. White, M. C., Chaney, R. L., and Decker, A. M. (1981) Metal complexation in xylem fluid. III Electrophoretic evidence, Plant physiol. 67, 311-315 https://doi.org/10.1104/pp.67.2.311

Cited by

  1. Influence of Indian mustard (Brassica juncea) on rhizosphere soil solution chemistry in long-term contaminated soils: A rhizobox study vol.22, pp.1, 2010, https://doi.org/10.1016/S1001-0742(09)60080-2
  2. Organic Acid Characteristics and Tolerance of Sengon (Paraserianthes falcataria L Nielsen) to Lead vol.18, pp.3, 2012, https://doi.org/10.7226/jtfm.18.3.177
  3. Effect of Miscanthus cultivation on metal fractionation and human bioaccessibility in metal-contaminated soils: comparison between greenhouse and field experiments vol.22, pp.4, 2015, https://doi.org/10.1007/s11356-014-3585-1
  4. Current research trends for heavy metals of agricultural soils and crop uptake in Korea vol.31, pp.1, 2012, https://doi.org/10.5338/KJEA.2012.31.1.75
  5. Cadmium and lead accumulation and low-molecular-weight organic acids secreted by roots in an intercropping of a cadmium accumulator Sonchus asper L. with Vicia faba L. vol.6, pp.40, 2016, https://doi.org/10.1039/C5RA26601G
  6. on accumulation and sub-cellular distribution of lead and cadmium pp.1549-7879, 2019, https://doi.org/10.1080/15226514.2018.1523867