• Title/Summary/Keyword: Indian model

Search Result 397, Processing Time 0.023 seconds

Effect of delamination on vibration characteristic of smart laminated composite plate

  • Shankar, Ganesh;Varun, Jayant Prakash;Mahato, P.K.
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.4
    • /
    • pp.10-17
    • /
    • 2019
  • This study is concerned with a numerical analysis based on the finite element method to describe the effect of midplane delamination in smart laminated composite plate structures. A new finite element model for centrally located delamination and healthy section was developed and coded in Matlab. The transient analysis of delaminated composite plate with integrated Active Fiber Composite (AFC) was investigated in the present article. The formulation of the governing equation was based on the minimum total potential energy approach. The Newmark time integration technique was employed to solve the differential equations. A parametric study on the effects of boundary conditions and AFC patch location, in presence of delamination on the laminated plate were studied.

On the Study of Intraseasonal and Interannual Oscillations Simulation by using Coupled Model (접합모형을 이용한 경년 및 계절안 진동 모사실험 연구)

  • Ahn Joong-Bae
    • Journal of Environmental Science International
    • /
    • v.8 no.6
    • /
    • pp.645-652
    • /
    • 1999
  • In order to simulate and investigate the major characteristics of El Nino/Southern Oscillation(ENSO) and Madden Jullian Oscillation(MJO), an intermediate type atmosphere-ocean coupled model is developed and their results are examined. The atmosphere model is a time-dependent non-linear perturbation moist model which can determine the internal heating for itself. The counterpart of the atmosphere model is GCM-type tropical ocean model which has fine horizontal and vertical grid resolutions. In the coupled experiment, warm SST anomaly and increased precipitation and eastward wind and current anomalies associated with ENSO and MJO are properly simulated in Pacific and Indian Oceans. In spite of some discrepancies in simulation MJO, the observed atmospheric and oceanic low-frequency characteristics in the tropics are successfully identified. Among them, positive SST anomalies centered at the 100m-depth of tropical eastern-central Pacific due to the eastward advection of warm water and reduced equatorial upwelling, and negative anomalies in the Indian and western Pacific seem to be the fundamental features of tropical low-frequency oscillations.

  • PDF

Modelling and packed bed column studies on adsorptive removal of phosphate from aqueous solutions by a mixture of ground burnt patties and red soil

  • Rout, Prangya R.;Dash, Rajesh R.;Bhunia, Puspendu
    • Advances in environmental research
    • /
    • v.3 no.3
    • /
    • pp.231-251
    • /
    • 2014
  • The present study examines the phosphate adsorption potential and behavior of mixture of Ground Burnt Patties (GBP), a solid waste generated from cooking fuel used in earthen stoves and Red Soil (RS), a natural substance in fixed bed column mode operation. The characterization of adsorbent was done by Proton Induced X-ray Emission (PIXE), and Proton Induced ${\gamma}$-ray Emission (PIGE) methods. The FTIR spectroscopy of spent adsorbent reveals the presence of absorbance peak at $1127cm^{-1}$ which appears due to P = O stretching, thus confirming phosphate adsorption. The effects of bed height (10, 15 and 20 cm), flow rate (2.5, 5 and 7.5 mL/min) and initial phosphate concentration (5 and 15 mg/L) on breakthrough curves were explored. Both the breakthrough and exhaustion time increased with increase in bed depth, decrease in flow rate and influent concentration. Thomas model, Yoon-Nelson model and Modified Dose Response model were used to fit the column adsorption data using nonlinear regression analysis while Bed Depth Service Time model followed linear regression analysis under different experimental condition to evaluate model parameters that are useful in scale up of the process. The values of correlation coefficient ($R^2$) and the Sum of Square Error (SSE) revealed the Modified Dose Response model as the best fitted model to the experimental data. The adsorbent mixture responded effectively to the desorption and reusability experiment. The results of this finding advocated that mixture of GBP and RS can be used as a low cost, highly efficient adsorbent for phosphate removal from aqueous solution.

Mixed finite element model for laminated composite beams

  • Desai, Y.M.;Ramtekkar, G.S.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.3
    • /
    • pp.261-276
    • /
    • 2002
  • A novel, 6-node, two-dimensional mixed finite element (FE) model has been developed to analyze laminated composite beams by using the minimum potential energy principle. The model has been formulated by considering four degrees of freedom (two displacement components u, w and two transverse stress components ${\sigma}_z$, $\tau_{xz}$) per node. The transverse stress components have been invoked as nodal degrees of freedom by using the fundamental elasticity equations. Thus, the present mixed finite element model not only ensures the continuity of transverse stress and displacement fields through the thickness of the laminated beams but also maintains the fundamental elasticity relationship between the components of stress, strain and displacement fields throughout the elastic continuum. This is an important feature of the present formulation, which has not been observed in various mixed formulations available in the literature. Results obtained from the model have been shown to be in excellent agreement with the elasticity solutions for thin as well as thick laminated composite beams. A few results for a cross-ply beam under fixed support conditions are also presented.

A Probabilistic Fuzzy Logic Approach to Identify Productivity Factors in Indian Construction Projects

  • Princy, J. Darwin;Shanmugapriya, S.
    • Journal of Construction Engineering and Project Management
    • /
    • v.7 no.3
    • /
    • pp.39-55
    • /
    • 2017
  • Preeminent performance of construction industry are unattainable with poor productivity resulting in time and cost over runs. Enhancement in productivity cannot be achieved without identifying and analyzing factors that adversely affect productivity. The objective therefore is to propose a productivity analysis model to quantify the probability of effect of factors influencing productivity by using fuzzy logic incorporated with relative importance index method, for various types of construction projects. To achieve this objective, a questionnaire survey was carried out targeting respondents of Indian construction industry, from four distinct projects, namely, residential, commercial, infrastructure and industrial projects. Based on questionnaire administered, the relative importance and ranks of factors demonstrated using relative importance index method. Probability assessment model to analyze productivity was then developed by using Fuzzy Logic Toolbox of MATLAB. The applicability of the proposed model was tested in seven construction projects and the probability of impact of factors on productivity evaluated. The results of application of model in the construction firms infers that the most contributing factor groups for most of the projects were discerned to be manpower, motivation and time group.

The Transport of Radionuclides Released From Nuclear Facilities and Nuclear Wastes in the Marine Environment at Oceanic Scales

  • Perianez, Raul
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.3
    • /
    • pp.321-338
    • /
    • 2022
  • The transport of radionuclides at oceanic scales can be assessed using a Lagrangian model. In this review an application of such a model to the Atlantic, Indian and Pacific oceans is described. The transport model, which is fed with water currents provided by global ocean circulation models, includes advection by three-dimensional currents, turbulent mixing, radioactive decay and adsorption/release of radionuclides between water and bed sediments. Adsorption/release processes are described by means of a dynamic model based upon kinetic transfer coefficients. A stochastic method is used to solve turbulent mixing, decay and water/sediment interactions. The main results of these oceanic radionuclide transport studies are summarized in this paper. Particularly, the potential leakage of 137Cs from dumped nuclear wastes in the north Atlantic region was studied. Furthermore, hypothetical accidents, similar in magnitude to the Fukushima accident, were simulated for nuclear power plants located around the Indian Ocean coastlines. Finally, the transport of radionuclides resulting from the release of stored water, which was used to cool reactors after the Fukushima accident, was analyzed in the Pacific Ocean.

A Study on the Main Characteristics in Indian Arbitration and Conciliation Act (인도 중재.조정법의 주요 특성에 관한 연구)

  • Shin, Koon-Jae
    • Journal of Arbitration Studies
    • /
    • v.22 no.3
    • /
    • pp.71-92
    • /
    • 2012
  • The significant increase in international trade over the last few decades has been accompanied by an increase in the number of commercial disputes between Korea and India. Understanding the Indian dispute resolution system, including arbitration, is necessary for successful business operation with Indian companies. This article investigates characteristics of India's Arbitration and Conciliation Act in order to help then traders who enter into business with Indian companies to settle their disputes efficiently. The Arbitration and Conciliation Act(1996) based on the 1985 UNCITRAL Model Law on International Commercial Arbitration and the UNCITRAL Arbitration Rules 1976, has a number of characteristics including the following: (i) this act covers ad hoc arbitration and institutional arbitration (ii) parties to the arbitration agreement have no option except arbitration in case of any dispute (iii) the parties can choose their own laws, places, procedures, and arbitrators (iv) the decision of the arbitrators is final and binding (v)role of the court has been minimized and (vi) enforcement of foreign awards is recognized. However, there have been some court decisions that have not been in tune with the spirit and provisions of the Act. Therefore, Korean companies insert the KCAB's standard arbitration clause into their contracts and use India's ADR(Alternative Dispute Resolution) Methods to strategically resolve their disputes. Additionally, Korean companies investigate Indian companies' credit standing before entering into business relations with them.

  • PDF

Shape optimization of corner recessed square tall building employing surrogate modelling

  • Arghyadip Das;Rajdip Paul;Sujit Kumar Dalui
    • Wind and Structures
    • /
    • v.36 no.2
    • /
    • pp.105-120
    • /
    • 2023
  • The present study is performed to find the effect of corner recession on a square plan-shaped tall building. A series of numerical simulations have been carried out to find the two orthogonal wind force coefficients on various model configurations using Computational Fluid Dynamics (CFD). Numerical analyses are performed by using ANSYS-CFX (k-ℇ turbulence model) considering the length scale of 1:300. The study is performed for 0° to 360° wind angle of attack. The CFD data thus generated is utilised to fit parametric equations to predict alongwind and crosswind force coefficients, Cfx and Cfy. The precision of the parametric equations is validated by employing a wind tunnel study for the 40% corner recession model, and an excellent match is observed. Upon satisfactory validation, the parametric equations are further used to carry out multiobjective optimization considering two orthogonal force coefficients. Pareto optimal design results are presented to propose suitable percentages of corner recession for the study building. The optimization is based on reducing the alongwind and crosswind forces simultaneously to enhance the aerodynamic performance of the building.

Time-dependent compressibility characteristics of Montmorillonite Clay using EVPS Model

  • Singh, Moirangthem Johnson;Feng, Wei-Qiang;Xu, Dong-Sheng;Borana, Lalit
    • Geomechanics and Engineering
    • /
    • v.28 no.2
    • /
    • pp.171-180
    • /
    • 2022
  • Time-dependent stress-strain behaviour significantly influences the compressibility characteristics of the clayey soil. In this paper, a series of oedometer tests were conducted in two loading patterns and investigated the time-dependent compressibility characteristics of Indian Montmorillonite Clay, also known as black cotton soil (BC) soil, during loading-unloading stages. The experimental data are analyzed using a new non-linear function of the Elasto-Visco-Plastic Model considering Swelling behaviour (EVPS model). From the experimental result, it is found that BC soil exhibits significant time-dependent behaviour during creep compared to the swelling stage. Pore water entrance restriction due to consolidated overburden pressure and decrease in cation hydrations are responsible factors. Apart from it, particle sliding is also evident during creep. The time-dependent parameters like strain limit, creep coefficient and Cαe/Cc are observed to be significant during the loading stage than the swelling stage. The relationship between creep coefficients and applied stresses is found to be nonlinear. The creep coefficient increases significantly up to 630 kPa-760 kPa (during reloading), and beyond it, the creep coefficient decreases continuously. Several parameters like loading duration, the magnitude of applied stress, loading history, and loading path have also influenced secondary compressibility characteristics. The time-dependent compressibility characteristics of BC soil are presented and discussed in detail.

Estimation of Suitable Methodology for Determining Weibull Parameters for the Vortex Shedding Analysis of Synovial Fluid

  • Singh, Nishant Kumar;Sarkar, A.;Deo, Anandita;Gautam, Kirti;Rai, S.K.
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.21-30
    • /
    • 2016
  • Weibull distribution with two parameters, shape (k) and scale (s) parameters are used to model the fatigue failure analysis due to periodic vortex shedding of the synovial fluid in knee joints. In order to determine the later parameter, a suitable statistical model is required for velocity distribution of synovial fluid flow. Hence, wide applicability of Weibull distribution in life testing and reliability analysis can be applied to describe the probability distribution of synovial fluid flow velocity. In this work, comparisons of three most widely used methods for estimating Weibull parameters are carried out; i.e. the least square estimation method (LSEM), maximum likelihood estimator (MLE) and the method of moment (MOM), to study fatigue failure of bone joint due to periodic vortex shedding of synovial fluid. The performances of these methods are compared through the analysis of computer generated synovial fluidflow velocity distribution in the physiological range. Significant values for the (k) and (s) parameters are obtained by comparing these methods. The criterions such as root mean square error (RMSE), coefficient of determination ($R^2$), maximum error between the cumulative distribution functions (CDFs) or Kolmogorov-Smirnov (K-S) and the chi square tests are used for the comparison of the suitability of these methods. The results show that maximum likelihood method performs well for most of the cases studied and hence recommended.