• 제목/요약/키워드: Indian model

검색결과 403건 처리시간 0.022초

Rate-dependent shearing response of Toyoura sand addressing influence of initial density and confinement: A visco-plastic constitutive approach

  • Mousumi Mukherjee;Siddharth Pathaka
    • Geomechanics and Engineering
    • /
    • 제34권2호
    • /
    • pp.197-208
    • /
    • 2023
  • Rate-dependent mechanical response of sand, subjected to loading of medium to high strain rate range, is of interest for several civilian and military applications. Such rate-dependent response can vary significantly based on the initial density state of the sand, applied confining pressure, considered strain rate range, drainage condition and sand morphology. A numerical study has been carried out employing a recently proposed visco-plastic constitutive model to explore the rate-dependent mechanical behaviour of Toyoura sand under drained triaxial loading condition. The model parameters have been calibrated using the experimental data on Toyoura sand available in published literature. Under strain rates higher than a reference strain rate, the simulation results are found to be in good agreement with the experimentally observed characteristic shearing behaviour of sand, which includes increased shear strength, pronounced post-peak softening and suppressed compression. The rate-dependent response, subjected to intermediate strain rate range, has further been assessed in terms of enhancement of peak shear strength and peak friction angle over varying initial density and confining pressure. The simulation results indicate that the rate-induced strength increase is highest for the dense state and such strength enhancements remain nearly independent of the applied confinement level.

Numerical investigations on anchor channels under quasi-static and high rate loadings - Case of concrete edge breakout failure

  • Kusum Saini;Akanshu Sharma;Vasant A. Matsagar
    • Computers and Concrete
    • /
    • 제32권5호
    • /
    • pp.499-511
    • /
    • 2023
  • Anchor channels are commonly used for façade, tunnel, and structural connections. These connections encounter various types of loadings during their service life, including high rate or impact loading. For anchor channels that are placed close and parallel to an edge and loaded in shear perpendicular to and towards the edge, the failure is often governed by concrete edge breakout. This study investigates the transverse shear behavior of the anchor channels under quasi-static and high rate loadings using a numerical approach (3D finite element analysis) utilizing a rate-sensitive microplane model for concrete as constitutive law. Following the validation of the numerical model against a test performed under quasi-static loading, the rate-sensitive static, and rate-sensitive dynamic analyses are performed for various displacement loading rates varying from moderately high to impact. The increment in resistance due to the high loading rate is evaluated using the dynamic increase factor (DIF). Furthermore, it is shown that the failure mode of the anchor channel changes from global concrete edge failure to local concrete crushing due to the activation of structural inertia at high displacement loading rates. The research outcomes could be valuable for application in various types of connection systems where a high rate of loading is expected.

A Unified Analytical One-Dimensional Surface Potential Model for Partially Depleted (PD) and Fully Depleted (FD) SOI MOSFETs

  • Pandey, Rahul;Dutta, Aloke K.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제11권4호
    • /
    • pp.262-271
    • /
    • 2011
  • In this work, we present a unified analytical surface potential model, valid for both PD and FD SOI MOSFETs. Our model is based on a simplified one dimensional and purely analytical approach, and builds upon an existing model, proposed by Yu et al. [4], which is one of the most recent compact analytical surface potential models for SOI MOSFETs available in the literature, to improve its accuracy and remove its inconsistencies, thereby adding to its robustness. The model given by Yu et al. [4] fails entirely in modeling the variation of the front surface potential with respect to the changes in the substrate voltage, which has been corrected in our modified model. Also, [4] produces self-inconsistent results due to misinterpretation of the operating mode of an SOI device. The source of this error has been traced in our work and a criterion has been postulated so as to avoid any such error in future. Additionally, a completely new expression relating the front and back surface potentials of an FD SOI film has been proposed in our model, which unlike other models in the literature, takes into account for the first time in analytical one dimensional modeling of SOI MOSFETs, the contribution of the increasing inversion charge concentration in the silicon film, with increasing gate voltage, in the strong inversion region. With this refinement, the maximum percent error of our model in the prediction of the back surface potential of the SOI film amounts to only 3.8% as compared to an error of about 10% produced by the model of Yu et al. [4], both with respect to MEDICI simulation results.

새우 선물계약의 헤징유효성과 선물계약 설계 (The Hedging Effectiveness of Shrimp Futures Contract and Futures Contract Design)

  • 강석규
    • 수산경영론집
    • /
    • 제41권1호
    • /
    • pp.73-91
    • /
    • 2010
  • The objective of this study is to examine the hedging effectiveness of shrimp futures market. Hedging effectiveness is measured by OLS model based on rolling windows. Analysis data are obtained from Kansai Commodities Exchange in Osaka and are weekly data of frozen shrimp futures and cash prices in the time period from July 9, 2003, to May 9, 2007. The empirical results are summarized as follows:First, the correlation coefficients between the nearby futures price changes and the cash(16/20) price changes are very low and have range from 0.141 to 0.208 values. Second, the minimum variance hedge ratios($\hat{\beta}$) are all statistically different from 0 at the 5% level and range from 0.0477 to 0.5039 values excluding Indian shrimps(26/30). Ex post hedging effectiveness, as measured by the coefficient of determination, $R^2$, is relatively very low and range from a low of 0.4% for west-south Indian shrimps(26/30) to a high 4.3% for Vietnamese shrimps(16/20). Third, ex ante hedging effectiveness, as measured by out-of-sample hedging period, is also very low and range from a low of -4.4% for west-south Indian shrimps(21/25) to a high of 3.4% for Vietnamese shrimps(16/20). This indicates that the shrimp futures market doesn't behave as risk management instrument of shrimp spot.

In vitro and in vivo antidiarrhoeal activity of epigallocatechin 3-gallate: a major catechin isolated from indian green tea

  • Bandyopadhyay, Durba;Dutta, Pradeep Kumar;Dastidar, Sujata G;Chatterjee, Tapan Kumar
    • Advances in Traditional Medicine
    • /
    • 제8권2호
    • /
    • pp.171-177
    • /
    • 2008
  • Epigallocatechin 3-gallate (EGCG), one of the major catechins of tea, was isolated from the decaffeinated, crude methanolic extract of Indian green tea (Camellia sinensis L. O. Kuntze) using chromatographic techniques. EGCG was then screened for antidiarrhoeal activity against 30 strains (clinical isolates) of V. cholerae, which is a well known Gram negative bacillus functioning as the pathogen of cholera. V. cholerae strains like V. cholerae 69, 71, 83, 214, 978, 1021, 1315, 1347, 1348, 569B and ATCC 14033 were inhibited by EGCG at a concentration of $25\;{\mu}g/ml$ whereas V. cholerae 10, 522, 976 were even more sensitive, being inhibited at $10\;{\mu}g/ml$ level. However, V. cholerae DN 16, DN 26, 30, 42, 56, 58, 113, 117, 564, 593, 972 and ATCC 14035 were inhibited at $50\;{\mu}g/ml$ level of EGCG. Only four strains were inhibited at $100\;{\mu}g/ml$. In this study the isolated compound was found to be bacteriostatic in its mechanism of action. In the in vivo experiment using the rabbit ileal loop model two different dosages of EGCG ($500\;{\mu}g/ml$ and $1,000\;{\mu}g/ml$) were able to protect the animals when they were challenged with V. cholerae 569B in the ileum.

How to Enhance International Competitiveness of Korean Pharmaceutical Industry with CEPA as a momentum?

  • Park, Hyun-Chae
    • 무역상무연구
    • /
    • 제48권
    • /
    • pp.101-125
    • /
    • 2010
  • CEPA(Comprehensive Economic Partnership Agreement, hereinafter CEPA) between India and Korea may influence some changes on Korean pharmaceutical industry which shows less competitive advantages than Indian industry in many regards. So the purpose of this paper remains on suggesting the way of enhancing international competitiveness for Korean industry on the basis of double diamond model. Through the comprehensive and deep analysis, our findings on recommendable business strategies for Korea are as follows ; in terms of factor conditions, first, cooperative strategy in R&D for developing generics will be required. Second, Introduction of CMO business can be considered. In terms of demand condition, Korean firms should find out the chance for demand creation in Indian market which has future market potential and American market exploration, as soon as possible. With regards to strategy, structure and competition, trying M&A with leading Indian companies and utilizing well organized medical professionals in India will be considered. In the points of related and supportive parts, lastly, Korean government should try to make so called "National Strategic R&D committee" for pharmaceuticals and bring u-healthcare service to Korea in the first place. If Korean pharmaceutical industry implement above-mentioned strategies, CEPA can be turned into business opportunities from the crisis. As a result, Korean firms shall have more powerful global competitiveness eventually.

  • PDF

Optimal assessment and location of tuned mass dampers for seismic response control of a plan-asymmetrical building

  • Desu, Nagendra Babu;Dutta, Anjan;Deb, S.K.
    • Structural Engineering and Mechanics
    • /
    • 제26권4호
    • /
    • pp.459-477
    • /
    • 2007
  • A bi-directional tuned mass damper (BTMD) in which a mass connected by two translational springs and two viscous dampers in two orthogonal directions has been introduced to control coupled lateral and torsional vibrations of asymmetric building. An efficient control strategy has been presented in this context to control displacements as well as acceleration responses of asymmetric buildings having asymmetry in both plan and elevation. The building is idealized as a simplified 3D model with two translational and a rotational degrees of freedom for each floor. The principles of rigid body transformation have been incorporated to account for eccentricity between center of mass and center of rigidity. The effective and robust design of BTMD for controlling the vibrations in structures has been presented. The redundancy of optimum design has been checked. Non dominated sorting genetic algorithm (NSGA) has been used for tuning optimum stages and locations of BTMDs and its parameters for control of vibration of seismically excited buildings. The optimal locations have been observed to be reasonably compact and practically implementable.

Natural frequency characteristics of composite plates with random properties

  • Salim, S.;Iyengar, N.G.R.;Yadav, D.
    • Structural Engineering and Mechanics
    • /
    • 제6권6호
    • /
    • pp.659-671
    • /
    • 1998
  • Exercise of complete control on all aspects of any manufacturing / fabrication process is very difficult, leading to uncertainties in the material properties and geometric dimensions of structural components. This is especially true for laminated composites because of the large number of parameters associated with its fabrication. When the basic parameters like elastic modulus, density and Poisson's ratio are random, the derived response characteristics such as deflections, natural frequencies, buckling loads, stresses and strains are also random, being functions of the basic random system parameters. In this study the basic elastic properties of a composite lamina are assumed to be independent random variables. Perturbation formulation is used to model the random parameters assuming the dispersions small compared to the mean values. The system equations are analyzed to obtain the mean and the variance of the plate natural frequencies. Several application problems of free vibration analysis of composite plates, employing the proposed method are discussed. The analysis indicates that, at times it may be important to include the effect of randomness in material properties of composite laminates.

Prediction of nonlinear characteristics of soil-pile system under vertical vibration

  • Biswas, Sanjit;Manna, Bappaditya;Choudhary, Shiva S.
    • Geomechanics and Engineering
    • /
    • 제5권3호
    • /
    • pp.223-240
    • /
    • 2013
  • In the present study an attempt was made to predict the complex nonlinear parameters of the soil-pile system subjected to the vertical vibration of rotating machines. A three dimensional (3D) finite element (FE) model was developed to predict the nonlinear dynamic response of full-scale pile foundation in a layered soil medium using ABAQUS/CAE. The frequency amplitude responses for different eccentric moments obtained from the FE analysis were compared with the vertical vibration test results of the full-scale single pile. It was found that the predicted resonant frequency and amplitude of pile obtained from 3D FE analysis were within a reasonable range of the vertical vibration test results. The variation of the soil-pile separation lengths were determined using FE analysis for different eccentric moments. The Novak's continuum approach was also used to predict the nonlinear behaviour of soil-pile system. The continuum approach was found to be useful for the prediction of the nonlinear frequency-amplitude response of full-scale pile after introducing the proper boundary zone parameters and soil-pile separation lengths.

Fatigue life prediction of horizontally curved thin walled box girder steel bridges

  • Nallasivam, K.;Talukdar, Sudip;Dutta, Anjan
    • Structural Engineering and Mechanics
    • /
    • 제28권4호
    • /
    • pp.387-410
    • /
    • 2008
  • The fatigue damage accumulation rates of horizontally curved thin walled box-girder bridge have been estimated from vehicle-induced dynamic stress history using rain flow cycle counting method in the time domain approach. The curved box-girder bridge has been numerically modeled using computationally efficient thin walled box-beam finite elements, which take into account the important structural actions like torsional warping, distortion and distortional warping in addition to the conventional displacement and rotational degrees of freedom. Vehicle model includes heave-pitch-roll degrees of freedom with longitudinal and transverse input to the wheels. The bridge deck unevenness, which is taken as inputs to the vehicle wheels, has been assumed to be a realization of homogeneous random process specified by a power spectral density (PSD) function. The linear damage accumulation theory has been applied to calculate fatigue life. The fatigue life estimated by cycle counting method in time domain has been compared with those found by estimating the PSD of response in frequency domain. The frequency domain method uses an analytical expression involving spectral moment characteristics of stress process. The effects of some of the important parameters on fatigue life of the curved box bridge have been studied.