• Title/Summary/Keyword: Indian mathematics

Search Result 133, Processing Time 0.021 seconds

ON A NEW CLASS OF SERIES IDENTITIES

  • SHEKHAWAT, NIDHI;CHOI, JUNESANG;RATHIE, ARJUN K.;PRAKASH, OM
    • Honam Mathematical Journal
    • /
    • v.37 no.3
    • /
    • pp.339-352
    • /
    • 2015
  • We aim at giving explicit expressions of $${\sum_{m,n=0}^{{\infty}}}{\frac{{\Delta}_{m+n}(-1)^nx^{m+n}}{({\rho})_m({\rho}+i)_nm!n!}$$, where i = 0, ${\pm}1$, ${\ldots}$, ${\pm}9$ and $\{{\Delta}_n\}$ is a bounded sequence of complex numbers. The main result is derived with the help of the generalized Kummer's summation theorem for the series $_2F_1$ obtained earlier by Choi. Further some special cases of the main result considered here are shown to include the results obtained earlier by Kim and Rathie and the identity due to Bailey.

CERTAIN INTEGRAL REPRESENTATIONS OF EULER TYPE FOR THE EXTON FUNCTION $X_2$

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • The Pure and Applied Mathematics
    • /
    • v.17 no.4
    • /
    • pp.347-354
    • /
    • 2010
  • Exton [Hypergeometric functions of three variables, J. Indian Acad. Math. 4 (1982), 113~119] introduced 20 distinct triple hypergeometric functions whose names are $X_i$ (i = 1, ..., 20) to investigate their twenty Laplace integral representations whose kernels include the confluent hypergeometric functions $_oF_1$, $_1F_1$, a Humbert function ${\Psi}_2$, a Humbert function ${\Phi}_2$. The object of this paper is to present 16 (presumably new) integral representations of Euler type for the Exton hypergeometric function $X_2$ among his twenty $X_i$ (i = 1, ..., 20), whose kernels include the Exton function $X_2$ itself, the Appell function $F_4$, and the Lauricella function $F_C$.

AN INNOVATION DIFFUSION MODEL IN PARTIAL COMPETITIVE AND COOPERATIVE MARKET: ANALYSIS WITH TWO INNOVATIONS

  • CHUGH, S.;GUHA, R.K.;DHAR, JOYDIP
    • Journal of Applied and Pure Mathematics
    • /
    • v.4 no.1_2
    • /
    • pp.27-36
    • /
    • 2022
  • An innovation diffusion model is proposed model consists of three classes, namely, a non-adopter class, adopter class innovation-I, and adopter class innovation-II in a partially competitive and cooperative market. The proposed model is analyzed with the help of the qualitative theory of a system of ordinary differential equations. Basic influence numbers associated with first and second innovation $R_{0_1}$ and $R_{0_2}$ respectively in the absence of each other are quantified. Then the overall basic influence number (R0) of the system is assessed for analyzing stability in the market in different situations. Sensitivity analysis of basic influence numbers associated with first and second innovation in the absence of each other is carried out. Numerical simulation supports our analytical findings.

MONOTONICITY PROPERTIES OF THE BESSEL-STRUVE KERNEL

  • Baricz, Arpad;Mondal, Saiful R.;Swaminathan, Anbhu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1845-1856
    • /
    • 2016
  • In this paper our aim is to study the classical Bessel-Struve kernel. Monotonicity and log-convexity properties for the Bessel-Struve kernel, and the ratio of the Bessel-Struve kernel and the Kummer confluent hypergeometric function are investigated. Moreover, lower and upper bounds are given for the Bessel-Struve kernel in terms of the exponential function and some $Tur{\acute{a}}n$ type inequalities are deduced.

ON RELATIONSHIPS AMONG INTUITIONISTIC FUZZY APPROXIMATION OPERATORS, INTUITIONISTIC FUZZY TOPOLOGY AND INTUITIONISTIC FUZZY AUTOMATA

  • Tiwari, S.P.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.99-107
    • /
    • 2010
  • This paper is a study about the relationships among topologies and intuitionistic fuzzy topology induced, respectively, by approximation operators and an intuitionistic fuzzy approximation operator associated with an approximation space (X, R), when the relation R on X is precisely reflexive and transitive. In particular, we consider an intuitionistic fuzzy approximation operator on an approximation space X (i.e., a set X with a reflexive and transitive relation on it), which turns out to be an intuitionistic fuzzy closure operator. This intuitionistic fuzzy closure operator gives rise to two saturated fuzzy topologies on X and it turns out that all the level topologies of one of the fuzzy topology coincide and equal to the topology analogously induced on X by a crisp approximation operator. These observations are then applied to intuitionistic fuzzy automata.

NONSELECTIVE HARVESTING OF A PREY-PREDATOR COMMUNITY WITH INFECTED PREY

  • Chattopadhyay, J.;Ghosal, G.;Chaudhuri, K.S.
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.3
    • /
    • pp.835-850
    • /
    • 1999
  • The present paper deals with the problem of nonselective harvesting in a partly infected prey and predator system in which both the susceptible prey and the predator follow the law of logistic growth and some preys avoid predation by hiding. The dynamical behaviour of the system has been studied in both the local and global sense. The optimal policy of exploitation has been derived by using Pontraygin's maximal principle. Numerical analysis and computer simulation of the results have been performed to investigate the golbal properties of the system.

APPLICATION OF ADOMIAN'S APPROXIMATION TO BLOOD FLOW THROUGH ARTERIES IN THE PRESENCE OF A MAGNETIC FIELD

  • Haldar, K.
    • Journal of applied mathematics & informatics
    • /
    • v.12 no.1_2
    • /
    • pp.267-279
    • /
    • 2003
  • The present investigation deals with the application of Adomian's decomposition method to blood flow through a constricted artery in the presence of an external transverse magnetic field which is applied uniformly. The blood flowing through the tube is assumed to be Newtonian in character. The expressions for the two-term approximation to the solution of stream function, axial velocity component and wall shear stress are obtained in this analysis. The numerical solutions of the wall shear stress for different values of Reynold number and Hartmann number are shown graphically. The solution of this theoretical result for a particular Hart-mann number is compared with the integral method solution of Morgan and Young[17].

Approximation by Generalized Kantorovich Sampling Type Series

  • Kumar, Angamuthu Sathish;Devaraj, Ponnaian
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.3
    • /
    • pp.465-480
    • /
    • 2019
  • In the present article, we analyse the behaviour of a new family of Kantorovich type sampling operators $(K^{\varphi}_wf)_{w>0}$. First, we give a Voronovskaya type theorem for these Kantorovich generalized sampling series and a corresponding quantitative version in terms of the first order of modulus of continuity. Further, we study the order of approximation in $C({\mathbb{R}})$, the set of all uniformly continuous and bounded functions on ${\mathbb{R}}$ for the family $(K^{\varphi}_wf)_{w>0}$. Finally, we give some examples of kernels such as B-spline kernels and the Blackman-Harris kernel to which the theory can be applied.

A SUBCLASS OF HARMONIC UNIVALENT MAPPINGS WITH A RESTRICTED ANALYTIC PART

  • Chinhara, Bikash Kumar;Gochhayat, Priyabrat;Maharana, Sudhananda
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.841-854
    • /
    • 2019
  • In this article, a subclass of univalent harmonic mapping is introduced by restricting its analytic part to lie in the class $S^{\delta}[{\alpha}]$, $0{\leq}{\alpha}<1$, $-{\infty}<{\delta}<{\infty}$ which has been introduced and studied by Kumar [17] (see also [20], [21], [22], [23]). Coefficient estimations, growth and distortion properties, area theorem and covering estimates of functions in the newly defined class have been established. Furthermore, we also found bound for the Bloch's constant for all functions in that family.

The Influence of Arabic Mathematics on the Modern Mathematics (아라비아 수학이 근세 수학 발전에 미친 영향)

  • 정지호
    • Journal for History of Mathematics
    • /
    • v.2 no.1
    • /
    • pp.9-27
    • /
    • 1985
  • Islam toot a great interest in the utility sciences such as mathematics and astronomy as it needed them for the religious reasons. It needeed geometry to determine the direction toward Mecca, its holiest place: arithmetic and algebra to settle the dates of the festivals and to calculate the accounts lot the inheritance; astronomy to settle the dates of Ramadan and other festivals. Islam expanded and developed mathematics and sciences which it needed at first for the religious reasons to the benefit of all mankind. This thesis focuses upon the golden age of Islamic culture between 7th to 13th century, the age in which Islam came to possess the spirit of discovery and learning that opened the Islamic Renaissance and provided, in turn, Europeans with the setting for the Renaissance in 14th century. While Europe was still in the midst of the dark age of the feudal society based upon the agricultural economy and its mathematics was barey alive with the efforts of a few scholars in churches, the. Arabs played the important role of bridge between civilizations of the ancient and modern times. In the history of mathematics, the Arabian mathematics formed the orthodox, not collateral, school uniting into one the Indo-Arab and the Greco-Arab mathematics. The Islam scholars made a great contribution toward the development of civilization with their advanced the development of civilization with their advanced knowledge of algebra, arithmetic and trigonometry. the Islam mathematicians demonstrated the value of numerals by using arithmetic in the every day life. They replaced the cumbersome Roman numerals with the convenient Arabic numerals. They used Algebraic methods to solve the geometric problems and vice versa. They proved the correlation between these two branches of mathematics and established the foundation of analytic geometry. This thesis examines the historical background against which Islam united and developed the Indian and Greek mathematics; the reason why the Arabic numerals replaced the Roman numerals in the whole world: and the influence of the Arabic mathematics upon the development of the modern mathematics.

  • PDF