• Title/Summary/Keyword: Independent vector control

Search Result 62, Processing Time 0.022 seconds

Integrated Driver for the Full Rotation Using Six-axial Forces by the Induction Type of Axial-gap Motor (유도형 축방향 모터의 6축력 제어를 이용한 대회전 구현용 통합 구동기)

  • Jung Kwang-Suk;Lee Sang-Heon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.8
    • /
    • pp.798-804
    • /
    • 2006
  • To overcome the limited relative uncertainty and work range of the existing planar stage and the bulk structure of the contact-less motor for rotation, the novel operating principle to realize the precise rotation is suggested. It uses the two-axial vector forces, normal force and thrust force, of three-induction type of axial motors located $120^{\circ}$ apart, resulting in the contact-free rotation of the mover. Firstly in this paper, the magnetic forces across the air gap are modeled and simulated under the various conditions. It clarifies the feasible range of the derived solution. And the algorithm compensating the strong cross couple between the forces and the control inputs; generally AC magnitude and slip frequency, is given to realize the independent control of six axes. Finally, for the successfully implemented system, the round test and the micro step test results are given.

GPS/INS Integration using Vector Delay Lock Loop Processing Technique

  • Kim, Hyun-Soo;Bu, Sung-Chun;Jee, Gyu-In
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2641-2647
    • /
    • 2003
  • Conventional DLLs estimate the delay times of satellite signals individually and feed back these measurements to the VCO independently. But VDLL estimates delay times and user position directly and then estimate the feedback term for VCO using the estimated position changes. In this process, input measurements are treated as vectors and these vectors are used for navigation. First advantage of VDLL is that noise is reduced in all of the tracking channels making them less likely to enter the nonlinear region and fall below threshold. Second is that VDLL can operate successfully when the conventional independent parallel DLL approach fails completely. It means that VDLL receiver can get enough total signal power to track successfully to obtain accurate position estimates under the same conditions where the signal strength from each individual satellite is so low or week that none of the individual scalar DLL can remain in lock when operating independently. To operate VDLL successfully, it needs to know the initial user dynamics and position and prevents total system from the divergence. The suggested integration method is to use the inertial navigation system to provide initial dynamics for VDLL and to maintain total system stable. We designed the GPS/INS integrated navigation system. This new type of integrated system contained the vector pseudorange format generation block, VDLL signal processing block, position estimation block and the conversion block from position change to delay time feedback term aided by INS.

  • PDF

The Study on Aerodynamic Characteristics for the Design of High Efficiency Jet Vane (고 효율 제트 베인 설계를 위한 공기역학적 특성 연구)

  • 길경섭;정용갑;박종호
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.4
    • /
    • pp.39-45
    • /
    • 2003
  • Of the various means for active trajectory correction, a thrust vector control system represents the only principle independent of missile external forces so that this method is operative. The purpose of this study is to analyze the characteristic of jet vane TVC(Thrust vector control) system among mechanical jet deflection. To ensure high performance leading edge shape, aspect ratio and ablated condition is optimized. Supersonic flow system, jet vanes and nozzle with Mach number 2.88 and under expansion ratio 2 were designed to study aerodynamic characteristics of leading edge shape, aspect ratio and ablated conditions.

MRAS Based Sensorless Control of a Series-Connected Five-Phase Two-Motor Drive System

  • Khan, M. Rizwan;Iqbal, Atif
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.224-234
    • /
    • 2008
  • Multi-phase machines can be used in variable speed drives. Their applications include electric ship propulsion, 'more-electric aircraft' and traction applications, electric vehicles, and hybrid electric vehicles. Multi-phase machines enable independent control of a few numbers of machines that are connected in series in a particular manner with their supply being fed from a single voltage source inverter(VSI). The idea was first implemented for a five-phase series-connected two-motor drive system, but is now applicable to any number of phases more than or equal to five-phase. The number of series-connected machines is a function of the phase number of VSI. Theoretical and simulation studies have already been reported for number of multi-phase multi-motor drive configurations of series-connection type. Variable speed induction motor drives without mechanical speed sensors at the motor shaft have the attractions of low cost and high reliability. To replace the sensor, information concerning the rotor speed is extracted from measured stator currents and voltages at motor terminals. Open-loop estimators or closed-loop observers are used for this purpose. They differ with respect to accuracy, robustness, and sensitivity against model parameter variations. This paper analyses operation of an MRAS estimator based sensorless control of a vector controlled series-connected two-motor five-phase drive system with current control in the stationary reference frame. Results, obtained with fixed-voltage, fixed-frequency supply, and hysteresis current control are presented for various operating conditions on the basis of simulation results. The purpose of this paper is to report the first ever simulation results on a sensorless control of a five-phase two-motor series-connected drive system. The operating principle is given followed by a description of the sensorless technique.

Construction and Characterization of Transformed Insect Cells Expressing Baculovirus Very Late Factor in an Infection-Independent Manner

  • Park, Hye-Jin;Lee, Kwang-Sik;Cho, Eun-Sook;Yun, Eun-Young;Kang, Seok-Woo;Kim, Keun-Young;Sohn, Hung-Dae;Jin, Byung-Rae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.2 no.1
    • /
    • pp.19-26
    • /
    • 2001
  • Transformed Spodoptera frugiperda (Sf9) cells expressing baculovirus very late factor (VLF-1) were constructed by using Autograha nuclear polyhedrosis virus (AcNPV) immediate earthy gene (ie1). Neomycin-resistance gene as a selectable marker was introduced under the control of AcNPV ie1 promoter, and Bombyx mori nuclear polyhedrosis (BmNPV-K1) vlf-1 gene was introduced under the control of the Drosophila heat shock protein gene (hspr70) promoter to yield dual expression plasmid with two independent transcription units. It was transfected into Sf9 cells and cell clones expressing vlf-1 were selected by G4l8 treatment. Genomic DNA from transformed cells was isolated and integration of AcNPV iel harboring vlf-1 was confirmed by PCR using AcNPV iel-specific primers and Southern blot analysis. The transformed cells expressing VLF-1 in an infection-independent manner expressed foreign gene product of recombinant baculovirus in the earlier stage of infection compared with control Sf9 cells. These results suggest the possible to develop highly efficient transformed insect cells for baculovirus expression vector system.

  • PDF

A Novel Parameter-independent Fictive-axis Approach for the Voltage Oriented Control of Single-phase Inverters

  • Ramirez, Fernando Arturo;Arjona, Marco A.;Hernandez, Concepcion
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.533-541
    • /
    • 2017
  • This paper presents a novel Parameter-Independent Fictive-Axis (PIFA) approach for the Voltage-Oriented Control (VOC) algorithm used in grid-tied single-phase inverters. VOC is based on the transformation of the single-phase grid current into the synchronous reference frame. As a result, an orthogonal current signal is needed. Traditionally, this signal has been obtained from fixed time delays, digital filters or a Hilbert transformation. Nevertheless, these solutions present stability and transient drawbacks. Recently, the Fictive Axis Emulation (FAE) VOC has emerged as an alternative for the generation of the quadrature current signal. FAE requires detailed information of the grid current filter along with its transfer function for signal creation. When the transfer function is not accurate, the direct and quadrature current components present steady-state oscillations as the fictive two-phase system becomes unbalanced. Moreover, the digital implementation of the transfer function imposes an additional computing burden on the VOC. The PIFA VOC presented in this paper, takes advantage of the reference current to create the required orthogonal current, which effectively eliminates the need for the filter transfer function. Moreover, the fictive signal amplitude and phase do not change with a frequency drift, which results in an increased reliability. This yields a fast, linear and stable system that can be installed without fine tuning. To demonstrate the good performance of the PIFA VOC, simulation and experimental results are presented.

A Study on the Determinants of Social Welfare: Evidence from Macroeconomics

  • He, Yugang;Feng, Wang
    • The Journal of Industrial Distribution & Business
    • /
    • v.9 no.9
    • /
    • pp.7-14
    • /
    • 2018
  • Purpose - Social welfare is a social insurance system that provides funds and services for all citizens to maximize their life quality. Its ultimate goal is to alleviate social contradictions. Therefore, this paper explores the determinants of social welfare in terms of macroeconomics. Research design, data, and methodology - Based on the vector error correction model, the annual time series from 1990 to 2017 will be used to conduct an empirical analysis. The real GDP, the real income, the inflation and the degree of openness will be treated as independent variables. The input of social welfare will be treated as a dependent variable. These variables will be used to perform the cointegration test and the vector error correction model to explore how the macroeconomic variables affect social welfare both in long run and short run. Result - Via the empirical analysis, it can be summarized that the real GDP, the real income and the degree of openness are the driving determinants to enlarge the social welfare. Conversely, the inflation is the obstructive determinant to reduce the social welfare. Conclusion - The positive and negative determinants of social welfare exist simultaneously, China's government should take macroeconomic regulation and control to balance them to enlarge social welfare.

Torque Ripple Reduction in Three-Level Inverter-Fed Permanent Magnet Synchronous Motor Drives by Duty-Cycle Direct Torque Control Using an Evaluation Table

  • Chen, Wei;Zhao, Ying-Ying;Zhou, Zhan-Qing;Yan, Yan;Xia, Chang-Liang
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.368-379
    • /
    • 2017
  • In this paper, a direct torque control algorithm with novel duty cycle-based modulation is proposed for permanent magnet synchronous motor drives fed by neutral-point clamped three-level inverters. Compared with the standard DTC, the proposed algorithm can suppress steady-state torque ripples as well as ensure neutral-point potential balance and smooth vector switching. A unified torque/flux evaluation table with multiple voltage vectors and precise control levels is established and used in this method. This table can be used to evaluate the effects of duty-cycle vectors on torque and flux directly, and the elements of the table are independent of the motor parameters. Consequently, a high number of appropriate voltage vectors and their corresponding duty cycles can be selected as candidate vectors to reduce torque ripples by looking up the table. Furthermore, small vectors are incorporated into the table to ensure the neutral-point potential balance with the numerous candidate vectors. The feasibility and effectiveness of the proposed algorithm are verified by both simulations and experiments.

Coat Protein Gene-Mediated Resistance to Barely Yellow Mosaic Virus-HN and Barely Mild Mosaic Virus-Kor in Transgenic Barely

  • Lee, Kui-Jae;Kim, Hyung-Moo;Park, Min-Kyung;Lee, Wang-Hyu
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.75.1-75
    • /
    • 2003
  • Barely yellow mosaic(BaYMV) and barely mild mosaic (BaMMV) bymoviruses are both transmitted by the soil-inhabiting fungus Polymyxa gramnis, and are responsible for economic losses in barley crops in Asia and Europe. Because chemical control of the vector is ineffective, the losses can only be prevented by growing resistant barley cultivars. The objective of this study is to produce resistant barley plants by transformation with viral coat protein(cp) genes. Resistance tests of T1 plants transformed with the BaYMV CP gene showed that at least four independent lines had clear resistance to BaYMV but two other lines were highly susceptible with severe symptoms. The CP gene was detected in all resistant T1 plants by genomic PCR. Most of T2 progenies derived from the resistant T1 lines also showed resistance. In contrast, only one out of 21 independent T2 lines transformed with the BAMMV CP gene tested showed clear resistance to BaMMV, and others were very susceptible. Further analyses of resistance and CP gene expression are in progress.

  • PDF

Automatic learning of fuzzy rules for the equivalent 2 layered hierarchical fuzzy system (동등 변환 2계층 퍼지 시스템의 규칙 자동 학습)

  • Joo, Moon-G.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.598-603
    • /
    • 2007
  • To solve the rule explosion problem in multi-input fuzzy system, a method of converting a given fuzzy system to 2 layered hierarchical fuzzy system has been reported, where at the 1st layer, linearly independent fuzzy rule vectors generated from the given fuzzy system are used and, at the 2nd layer, linear combinations of these independent fuzzy rule vectors are used. In this paper, the steapest descent algorithm is presented to learn the fuzzy rule vectors and related coefficients for the equivalent 2 layered hierarchical structure. By simulation of learning of ball and beam control system, the feasibility of proposed learning scheme is shown.