• Title/Summary/Keyword: Independent Distributed Power Generation System

Search Result 8, Processing Time 0.028 seconds

Contactless Power Supply for DC Power Service in Hybrid Home Generation System (수용가 직류 서비스를 위한 무접점 전원장치)

  • Chung, Bong-Geun;Kang, Sung-In;Kim, Yoon-Ho;Kim, Eun-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.174-182
    • /
    • 2007
  • Among the alternative energy sources, the solar energy is recognized as an important energy source and its application is increasing. Especially in future, the hybrid solar energy generation system with battery will be widely used as an independent distributed power generation system. In this paper, a solar power hybrid home generation system using a contactless power supply (CPS) that can transfer an electric power without any mechanical contact by using magnetic coupling instead of the power transfer by directly supplying the DC power to the home electric system is proposed. The proposed system consists of a ZVS boost converter, a half bridge LLC resonant converter and contact-less transformer.

Contactless Power Supply for DC Power Service in Hybrid Home Generation System (직류수용가 서비스를 위한 무접점 전원장치)

  • Kang, J.W.;Song, H.K.;Kim, J.H.;Kim, E.S.;Kim, Y.H.
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.104-107
    • /
    • 2007
  • Among the alternative energy sources, the solar energy is recognized as an important energy source and its application is increasing. Especially in future, the hybrid solar energy generation system with battery will be widely used as an independent distributed power generation system. In this paper, a solar power hybrid home generation system using a contact-less power supply (CPS) that can transfer an electric power without any mechanical contact by using magnetic coupling instead of the power transfer by directly supplying the DC power to the home electric system is proposed. The proposed system consists of a ZVS boost converter, a half bridge LLC resonant converter and contact-less transformer.

  • PDF

Assessment of Benefits on Distributed Generation in KOREA (우리나라 전력계통의 분산형 전원에 대한 정량적 편익산정)

  • Kim, Yong-Ha;Kim, Ui-Gyeong;Oh, Seok-Hyun;Kim, Dong-Gun;Lee, Pyong-Ho;Woo, Sung-Min
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.686-687
    • /
    • 2011
  • In this paper, the method on calculating benefits of combined heat and power is introduced for standard evaluation in electrical power system. This paper calculates benefits about new national viewpoint and viewpoint of independent power producers and assesses benefits of combined heat and power in Korea and In Seoul national capital area. Benefit costs are composed of avoid cost of centralized generation, line upgrading adjustment, loss adjustment and electrical power trade cost per year in earlier study, in addition trade cost of CO2, construction cost of combined heat and power for accurate calculation. Benefit of combined heat and power is calculated by simulation results of real electrical power system.

  • PDF

A SRF Power Flow Control Method for Grid-Connected Single-Phase Inverter Systems (단상 계통연계 인버터의 SRF 전력제어 방법)

  • Park, Han-Eol;Kim, Eun-Seok;Song, Joong-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.5
    • /
    • pp.129-135
    • /
    • 2010
  • It is well known that distributed generation(DG) system using renewable energy is an alternative to solve the problems which result from the exhaustion of fossil fuel and the environmental pollution. A PWM inverter is required for a power flow control in the DG systems. This paper proposes a SRF power flow control method considering grid impedance in grid-connected single-phase inverter systems. The proposed SRF power flow control method can provide a voltage-reference for the single-phase inverter even without any grid impedance estimation so that the single-phase inverter system could operate in stand-alone mode and grid-connected mode based on the known nominal value of grid impedance. Also independent controls of active and reactive power are achieved by the proposed control method. The effectiveness and the validity of the proposed control method are demonstrated through simulations. The simulation results show that the proposed control method can control properly power flow in grid-connected single-phase inverter systems.

Network Performance Verification for Next-Generation Power Distribution Management System Using FRTU Simulator (FRTU 시뮬레이터를 이용한 차세대 배전지능화시스템 네트워크 성능검증)

  • Yeo, Sang-Uk;Son, Sung-Yong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.6
    • /
    • pp.523-529
    • /
    • 2020
  • Power distribution management system is essential for the efficient management and operation of power distribution networks. The power distribution system is a system that manages the distribution network based on IT, and has been evolving along with the development of the power industry. The current power distribution system is designed to operate at a relatively low network transmission speed based on the independent operation of the main equipment. However, due to distributed resources such as photovoltaic or energy storage devices, which are rapidly increasing in popularity in recent years, the operation of future distribution environments is becoming more complex, and various information needs to be collected in real time. In this study, the requirements of the next-generation power distribution system were derived to overcome the limitations of the existing power distribution system, and based on this, the communication network system and performance requirements for the distribution system were defined. In order to verify the performance of the designed system, a software-based terminal device simulator was developed because it takes excessive time and cost to introduce a large-scale system such as a power distribution system. Using the simulator, a test environment similar to the actual operation was established, and the number of terminal devices was increased up to 1,000. The proposed system was shown to satisfy the requirements to support the functions of the next-generation power distribution system, recording less than 10 % of the communication network bandwidth.

Transmission Network Expansion Planning for the Penetration of Renewable Energy Sources - Determining an Optimal Installed Capacity of Renewable Energy Sources

  • Kim, Sung-Yul;Shin, Je-Seok;Kim, Jin-O
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1163-1170
    • /
    • 2014
  • Due to global environmental regulations and policies with rapid advancement of renewable energy technologies, the development type of renewable energy sources (RES) in power systems is expanding from small-scale distributed generation to large-scale grid-connected systems. In the near future, it is expected that RES achieves grid parity which means the equilibrium point where the power cost of RES is equal to the power costs of conventional generators. However, although RES would achieve the grid parity, the cost related with development of large-scale RES is still a big burden. Furthermore, it is hard to determine a suitable capacity of RES because of their output characteristics affected by locations and weather effects. Therefore, to determine an optimal capacity for RES becomes an important decision-making problem. This study proposes a method for determining an optimal installed capacity of RES from the business viewpoint of an independent power plant (IPP). In order to verify the proposed method, we have performed case studies on real power system in Incheon and Shiheung areas, South Korea.

Equivalent Grid Impedance Estimation Method Using Negative Sequence Current Injection in Three-Phase Grid-connected Inverter (3상 계통 연계형 인버터의 역상분 전류 주입을 이용한 계통 등가 임피던스 추정 기법)

  • Park, Chan-Sol;Song, Seung-Ho;Im, Ji-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.6
    • /
    • pp.526-533
    • /
    • 2015
  • A new algorithm is proposed for the estimation of equivalent grid impedance at the point of common coupling of a grid-tie inverter output. The estimated impedance parameter can be used for the improvement of the performance and the stability of the distributed generation system. The estimation error is inevitable in the conventional estimation method because of the axis rotation due to PLL. In the conventional estimation error, the d-q voltage and current are used for the calculation of the impedance with active and reactive current injections. Conversely, in the proposed algorithm, the negative sequence current is injected, and then the negative sequence voltage is measured for the impedance estimation. As the positive and negative sequence current controller is independent and the PLL is based on the positive sequence component only, the estimation of the equivalent impedance can be achieved with high accuracy. Simulation and experimental results are compared to validate the proposed algorithm.

A Study on the Optimal Resource Configuration Considering Load Characteristics of Electric Vehicles in Micro Grid Environment (전기자동차 부하 특성을 고려한 마이크로그리드의 최적 전원 구성에 관한 연구)

  • Hwang, Sung-Wook;Chae, Woo-Kyu;Lee, Hak-Ju;Yun, Sang-Yun;Kim, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.228-231
    • /
    • 2015
  • In power system research fields, one of current key issues is the construction and commercialization of micro grid site which is called green island, carbon zero island, energy independent island, building micro grid, etc. and various affiliated technologies have been being vigorously developed to realize. In addition, various researches about electric vehicles (EVs) are in progress and it is expected to penetrate rapidly with the next a few years. Some new load models should be developed integrating with electric vehicle loads because the EVs' deployment could cause the change of load composition rate on power system planning and operations. EVs are also resources for micro grid as well as distributed generation and demand response so that various supply and demand side resources should be considered for micro grid researches. In this paper, the load composition rate of residential sectors is prospected considering the deployment of EVs and the resource configuration of micro grid is optimized based on net present cost. In the optimization, the load patten of case studies includes EV's charging characteristics and various cases are simulated comparing micro grid environment and normal condition. HOMER is used to compare various cases and economic effects.