• Title/Summary/Keyword: Indent

Search Result 40, Processing Time 0.022 seconds

Analysis of the Extension Effects of Fatigue Life by Pre-Indentation in Aluminum Alloy Plates (알루미늄 합금 판재에서 예비압입에 의한 피로수명의 연장효과 분석)

  • Cho, Hwankee;Hwang, Jungsun
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.1
    • /
    • pp.45-52
    • /
    • 2007
  • This paper analyzed the extension effects of fatigue life and the application of pre-indentation in aircraft structural material such as aluminum alloys. The test specimen used the thin sheet of aluminum alloy with a single-edged notch. The experiments were conducted after making the pre-crack under a constant amplitude loading. As the fatigue life extension technique, the pre-indentation making an indent on the predicted path of crack propagation was applied. The work presented here discussed about a proper mathematical relation between crack growth rate and the range of stress intensity factor and about the generalization of crack growth mechanism with large retardation effect. A technique to enhance the applicability of pre-indentation if also mentioned.

  • PDF

Three-Dimensional Flow and Aerodynamic Loss Downstream of a Turbine Rotor Blade with a Squealer Tip (스퀄러팁 터빈 동익 하류에서의 3차원 유동 및 압력손실)

  • Chae, Byoung-Joo;Lee, Sang-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.913-920
    • /
    • 2006
  • Three-dimensional flow and aerodynamic loss in the tip-leakage flow region of a high-turning first-stage turbine rotor blade with a squealer tip have been measured with a straight miniature five-hole probe for the tip gap-to-chord ratio, h/c, of 2.0%. This squealer tip has a indent-to-chord ratio, $h/{st}/c$, of 5.5%. The results are compared with those for a plane tip $(h_{st}/c=0.0%)$. The squealer tip tends to reduce the mass flow through the tip gap and to suppress the development of the tip-leakage vortex. Therefore, it delivers lower aerodynamic loss in the near-tip region than the plane tip does. At the mid-span, however, the aerodynamic loss has nearly the same value for the two different tips.

Effect of Multiple Contact Spots Simulated by Array of Balls on Contact Resistance (볼군의 다수 접촉점이 접촉저항에 미치는 영향)

  • ;Myshkin,N.K.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.2967-2972
    • /
    • 1994
  • The multiple character of the contact interaction and the collective behavior of elementary microcontacts play a significant role in all the processes occurring in the surface layers, including the failure due to friction and wear. The array of metal spheres compressed between flat plates has been used for simulation of the contact behavior of multiple contact of solids under normal loading. An experimental design has been made providing regular array of the spheres at the same size with different spatial order. Measurement of electrial contact resistance has been made using the equipment providing the adequate accuracy in the range of micro Ohms. The data on electrical contact resistance have been compared with theoretical predictions using the multiple contact model of constriction resistance. The effect of single spots number and array on conductivity of contact has been evaluated.

An Experimental Study on the Strengths and Flexural Deformation of Steel Fiber Reinforced Concrete According to the Steel Fiber-Type (강섬유의 종류에 따른 강섬유보강 콘크리트의 강도 및 휨변형 특성에 관한 실험적 연구)

  • 박승범;김의성;홍석주;강형선;권혁준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.328-334
    • /
    • 1996
  • This report is the results of an experimental study on the relative effectiveness of different types of steel fiber in concrete. The fibers considered in the study were straight-indent and hooked-collated with aspect ratios of about 50~100. A fiber volume of 0~2 percent was used throughout this investigation. The fresh fibrous mixes were characterized by the slump and vebe-time, and the hardened materials by their compressive and flexural load-deflection relationships. Hooked fibers were found to be more effective than straight ones in improving the strength and energy absorption of concrete.

  • PDF

Task-Based Ontology of Problem Solving Adapters for Developing Intelligent Systems

  • Ko, Jesuk;Kitjongthawonkul, Somkiat
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.3
    • /
    • pp.353-360
    • /
    • 2004
  • In this paper we describe Task-Based Problem Solving Adapters (TPSAs) for modeling a humam solution (through activity-centered analysis) to a software solution (in form of computer-based artifact). TPSAs are derived from the problem solving pattern or consistent problem solving structures/strategies employed by practitioners while designing solutions to complex problems. The adapters developed by us lead toward human-centeredness in their design and underpinning that help us to address the pragmatic task constraints through a range of technologies like neural networks, fuzzy logic, and genetic algorithms. We also outline an example of applying the TPSAs to develop a working system for assisting sales engineers of an electrical manufacturing firm in preparing indent and monitoring the status of orders in the company.

A comparison of fracture rate of artificial light-weight aggregates by various drying, breaking, and forming methods (건조법, 파쇄법, 성형법에 따른 인공경량골재의 파쇄율 비교)

  • Park Jiyun;Kim Yootaek;Lee Ki-Gang;Kang Seunggu;Kim Jung-Hwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.1
    • /
    • pp.39-44
    • /
    • 2005
  • A sheet type of green body was made with the mixture of 60 wt% red clay, 20 wt% fly ash, and 20 wt% stone sludge. Indentations were made on the surfaces of sheets to investigate fracture rate of 1 to 5 mm artificial light-weight aggregates by various drying, breaking, and forming methods. Drying methods of green bodies were natural, electric oven, microwave, and fast drying by torch. Breaking methods of green bodies were ballmill Ⅰ, ballmill Ⅱ, free dropping in the box, and mechanical breaking with roller mill. The depth and width of indent on the surface of the sheet were varied and the thickness of green bodies was also changed to investigate effects of indentation on fracture rates. The highest fracture rate of 42 % among the various drying methods was obtained by microwave drying for 210 sec and the highest fracture rate of 65 % among the various breaking method was obtained by ballmill Ⅱ method. In forming method, an yield of larger aggregates than Ф = 5 mm decreased and that of smaller aggregates than Ф = 5 mm in creased with increasing depth of indentation (only in 3 mm thick green body)and with increasing thickness of green body. The size of aggregates was most homogeneous (by judging from the measurement of aspect ratio of 1 to 5 mm aggregates.) when 3 mm thick green body was rapidly dried by torch and was broken by ballmill Ⅱ method.

The Measurement Errors of Elastic Modulus and Hardness due to the Different Indentation Speed (압입속도의 변화에 따른 탄성계수와 경도의 오차 연구)

  • Lee, Kyu-Young;Lee, Chan-Bin;Kim, Soo-In;Lee, Chang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.5
    • /
    • pp.360-364
    • /
    • 2010
  • Most research groups used two analysis methods (spectroscopy and nanotribology) to measure the mechanical properties of nano-materials: NMR (Nuclear Magnetic Resonance), IR (Infrared Spectroscopy), Raman Spectroscopy as the spectroscopy method and AFM (Atomic Force MicroScope), EFM (Electrostatic Force Microscope), KFM (Kelvin Force Microscope), Nanoindenter as the nanotribological one. Among these, the nano-indentation technique particularly has been recognized as a powerful method to measure the elastic modulus and the hardness. However, this technique are prone to considerable measurement errors with pressure conditions during measurement. In this paper, we measured the change of elastic modulus and hardness of an Al single crystal with the change of load, hold, and unload time, respectively. We found that elastic modulus and hardness significantly depend on load, hold, and unload time, etc. As the indent time was shortened, the elastic modulus value decreased while the hardness value increased. In addition, we found that elastic modulus value was more sensitive to indent load, hold, and unload time than the hardness value. We speculate that measurement errors of the elastic modulus and the hardness originate from the residual stress during indenting test. From our results, the elastic modulus was more susceptible to the residual stress than the hardness. Thus, we find that the residual stress should be controlled for the minimum measurement errors during the indenting test.

Development of Continuous and Scalable Nanomanufacturing Technologies Inspired by Traditional Machining Protocols Such as Rolling, Pullout, and Forging (롤압연, 압출, 단조 등 전통 기계가공법의 모사 응용을 통한 다양한 나노패턴의 대면적 연속생산 기술 구현)

  • Ok, Jong G.;Kwak, Moon Kyu;Guo, L. Jay
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.198-202
    • /
    • 2015
  • We present a series of simple but novel nanopatterning methodologies inspired by traditional mechanical machining processes involving rolling, pullout, and forging. First, we introduce roll-to-roll nanopatterning, which adapts conventional rolling for continuous nanopatterning. Then, nano-inscribing and nano-channel lithography are demonstrated, whereby seamless nanogratings can be continuously pulled out, as in a pullout process. Finally, we discuss vibrational indentation micro- and nanopatterning. Similarly to the forging/indentation process, this technique employs high-frequency vertical vibration to indent periodic micro/nanogratings onto a horizontally fed substrate. We discuss the basic principles of each process, along with its advantages, disadvantages, and potential applications. Adopting mature and reliable traditional technologies for small-scale machining may allow continuous nanopatterning techniques to cope with scalable and low-cost nanomanufacturing in a more productive and trustworthy way.

A Study on Application of Coordinates Transformation Methods on Parcel and Forestry Map Connection (지적도와 임야도접합을 위한 좌표변환방법 적용에 관한 연구)

  • 강준묵;조성호;김성진
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.4
    • /
    • pp.405-413
    • /
    • 2002
  • It is crucial that we should set proper standards capable of efficiently handling new corrections of maps, connections of edges on the maps, administrative districts, and inter-scale connections in order to make serial cadastral maps. This study drew a two dimensional Parameter using an indent point, as a Review Control Point, on forest screening line or boundary line of administrative district. The study also introduced a few different transformations such as Affine Transformation, N-Degree Polynomial Transformation, and Projective Transformation, the two dimensional transformation methods to apply them to the connection of cadastal·forestry maps and the connection of parcels between the administrative districts, on the forestry map designed by discretionary edges on the maps per district unit with parcel numbers and tried to apply the coordinates transformation method to connections of maps to make serial cadastral maps.

A study on Creep of Plate PMMA in Thermal-Nanoindentation Process for Hyperfine pit structure Fabrication (극미세 점 구조체 제작을 위한 열간나노압입 공정에서의 평판형 PMMA의 크립현상에 관한 연구)

  • Lee, E.K.;Jung, Y.N.;Kang, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.273-276
    • /
    • 2008
  • Thermoplastic resin takes place stress relaxation and creep according to temperature and time. In room temperature, time dependent deformation (TDD) of polymer was carried out at previous study. In this study, it evaluates time dependent deformation to relate temperature. Nanoscale indents can be used as cells for molecular electronics and drug delivery, slots for integration into nanodevices, and defects for tailoring the structure and properties. Therefore, it is important to control pattern depth for change of indent depth by creep when using Nanoindenter. For evaluating TDD at high temperature, it is occurred thermal-nanoindentation test by changing hold time at maximum load. Temperature is putted at $90^{\circ}C$, hold time at maximum loads are putted at 1, 10, 50, 100, 200, 300 and 500s.

  • PDF