• 제목/요약/키워드: Incremental Dynamic Analysis

검색결과 252건 처리시간 0.022초

Seismic retrofit of steel structures with re-centering friction devices using genetic algorithm and artificial neural network

  • Mohamed Noureldin;Masoum M. Gharagoz;Jinkoo Kim
    • Steel and Composite Structures
    • /
    • 제47권2호
    • /
    • pp.167-184
    • /
    • 2023
  • In this study, a new recentering friction device (RFD) to retrofit steel moment frame structures is introduced. The device provides both self-centering and energy dissipation capabilities for the retrofitted structure. A hybrid performance-based seismic design procedure considering multiple limit states is proposed for designing the device and the retrofitted structure. The design of the RFD is achieved by modifying the conventional performance-based seismic design (PBSD) procedure using computational intelligence techniques, namely, genetic algorithm (GA) and artificial neural network (ANN). Numerous nonlinear time-history response analyses (NLTHAs) are conducted on multi-degree of freedom (MDOF) and single-degree of freedom (SDOF) systems to train and validate the ANN to achieve high prediction accuracy. The proposed procedure and the new RFD are assessed using 2D and 3D models globally and locally. Globally, the effectiveness of the proposed device is assessed by conducting NLTHAs to check the maximum inter-story drift ratio (MIDR). Seismic fragilities of the retrofitted models are investigated by constructing fragility curves of the models for different limit states. After that, seismic life cycle cost (LCC) is estimated for the models with and without the retrofit. Locally, the stress concentration at the contact point of the RFD and the existing steel frame is checked being within acceptable limits using finite element modeling (FEM). The RFD showed its effectiveness in minimizing MIDR and eliminating residual drift for low to mid-rise steel frames models tested. GA and ANN proved to be crucial integrated parts in the modified PBSD to achieve the required seismic performance at different limit states with reasonable computational cost. ANN showed a very high prediction accuracy for transformation between MDOF and SDOF systems. Also, the proposed retrofit showed its efficiency in enhancing the seismic fragility and reducing the LCC significantly compared to the un-retrofitted models.

현장시험을 통한 개단말뚝의 폐색효과에 대한 연구 (Analysis of Plugging Effect for Open-ended Piles Based on Field Tests)

  • 고준영;정상섬
    • 한국지반공학회논문집
    • /
    • 제30권12호
    • /
    • pp.51-61
    • /
    • 2014
  • 연구에서는 사질토 지반에서 개단말뚝의 지지력에 영향을 미치는 폐색효과를 조사하기 위하여 현장재하시험을 수행하였다. 현장재하시험은 직경이 다른 총 3본의 시험말뚝(508.0, 711.2, 914.4mm)을 제작하여 각각 동재하시험과 정재하시험을 실시하였다. 내주면마찰력과 외주면마찰력을 분리 측정하기 위하여 시험말뚝을 이중관으로 제작하였고, 외부말뚝의 안쪽과 내부말뚝의 바깥쪽 표면에 변형률계를 부착하였다. 정재하시험 결과, 내주면마찰력은 선단부로부터 총 관내토 길이의 약 18-34%의 부근에서 집중적으로 발생하였고, 이를 통해 말뚝 선단부근의 관내토가 내주면마찰력 발현에 큰 영향을 미치는 것을 알 수 있었다. 또한, 말뚝직경이 클수록 전체지지력에 대한 내주면마찰력과 순단면적의 선단지지력의 합의 비가 감소하는 것으로 나타났다. 그리고 말뚝의 폐색율을 정량화하기 위해 시험말뚝의 incremental filling ratio(IFR)를 측정하여 분석한 결과, SPT의 N값과 상관관계가 있는 것으로 나타났다.

이동하중의 편측재하에 따른 단순교의 충격계수 및 응답계수 변화 분석 (Investigation of Impact Factor and Response Factor of Simply Supported Bridges due to Eccentric Moving Loads)

  • 홍상현;노화성
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제22권6호
    • /
    • pp.105-113
    • /
    • 2018
  • 교량 내하력 추정을 위해 제안된 모델에서는 응답계수를 충격계수 응답스펙트럼을 활용하여 산정하고 있다. 이때 충격계수 응답스펙트럼은 오일러-베르누이 보 모델을 바탕으로 차량이동하중이 교량의 폭 방향으로 중앙부에 재하 된 조건으로 생성된 결과이다. 따라서 중앙부 차량재하가 아닌 편측 이동하중재하 시 충격계수와 응답계수의 변화를 분석해 볼 필요가 있다. 이를 위해 본 연구에서는 폭이 10m인 2차선 단순교를 대상으로 이동하중해석을 실시하여 최대 충격계수와 응답계수 변화를 분석하였다. 수치해석 결과, 중앙부 재하조건 대비 편측 재하조건 적용 시 최대 정적 및 동적 변위 모두 증가하지만 동적변위 보다 정적변위의 증가량이 더 크기 때문에 충격계수는 오히려 감소하게 된다. 하지만 이러한 차이는 0.5%p 미만으로서 그 영향이 크지 않다. 그리고 응답계수의 경우, 편측 재하조건으로 인해 정적응답계수보다 동적응답계수에서 차이가 더 크게 나타나지만 편측 재하에 따른 오차율의 차이는 0.18%p 정도로 매우 작았다. 즉, 편측 이동하중재하가 응답계수에 미치는 영향은 거의 없으며, 응답계수 산정에 있어서 중앙부 이동하중재하 조건으로 생성된 충격계수 응답스펙트럼을 활용하여도 충분한 예측이 가능하다고 판단된다.

보행하중에 대한 2방향 중공슬래브의 진동성능 평가 (Performance Evaluation of Floor Vibration of Biaxial Hollow Slab Subjected to Walking Load)

  • 김민균;박현재;이동근;황현식;김현수
    • 한국지진공학회논문집
    • /
    • 제13권5호
    • /
    • pp.11-21
    • /
    • 2009
  • 2방향 중공슬래브 시스템은 슬래브 두께가 증가해도 자중은 크게 증가하지 않으면서 솔리드 슬래브에 비해서 휨강성이 크게 저하되지 않는 장점이 있다. 따라서 최근 넓은 바닥판 구조에 대한 수요가 커지면서 2방향 중공슬래브 시스템에 대한 관심이 증가하고 있다. 그러나 이러한 장스팬 구조의 경우 바닥판 진동의 증가에 의한 사용성에 문제가 발생할 수 있고 특히 2방향 중공슬래브의 경우 기존의 구조시스템과 동적특성이 상이하다. 따라서 본 연구에서는 기존의 라멘조 시스템과 2방향 중공슬래브 시스템의 바닥진동성능을 보행하중을 가하여 검토해 보았다. 본 연구에서는 해석의 효율성을 위하여 2방향 중공슬래브의 동적특성을 정확히 나타낼 수 있는 등가의 플레이트 모델을 사용하여 시간이력해석을 수행하였다. 해석결과를 바탕으로 일본건축학회와 미국표준협회에서 제안하는 진동성능평가 기준을 이용하여 진동성능 평가를 수행한 결과 2방향 중공슬래브가 사무실 수준의 진동성능을 만족하고 있는 것으로 나타났다.

변형률 속도를 고려한 유한요소 기반 연성 찢김 해석 기법 개발 (Development of Finite Element Ductile Tearing Simulation Model Considering Strain Rate Effect)

  • 남현석;김지수;김진원;김윤재
    • 대한기계학회논문집A
    • /
    • 제40권2호
    • /
    • pp.167-173
    • /
    • 2016
  • 본 논문은 유한요소해석을 이용한 고변형률 조건에서의 연성파손 해석기법을 제안한다. 고변형률 하중이 작용하는 구조물에 대한 파괴거동 예측을 위해 본 논문에서는 Johnson/Cook 모델을 고려한 수정응력 파괴변형률 모델을 사용하였다. 제시된 모델은 인장 실험 모사해석결과로부터 얻어지는 삼축응력 및 파괴변형률에 의해 파손이 정의된다. 다양한 실험속도의 인장 실험결과 및 정적 하중조건에서의 파괴인성 실험을 이용하여 수정응력 파괴변형률 모델의 변수를 결정하였다. 결정된 모델을 이용하여 동적하중조건에서 파괴인성시편에 대한 해석을 수행하였으며 해석결과와 실험결과를 비교하여 해석기법을 검증하였다.

Collapse response assessment of low-rise buildings with irregularities in plan

  • Manie, Salar;Moghadam, Abdoreza S.;Ghafory-Ashtiany, Mohsen
    • Earthquakes and Structures
    • /
    • 제9권1호
    • /
    • pp.49-71
    • /
    • 2015
  • The present paper aims at evaluating damage and collapse behavior of low-rise buildings with unidirectional mass irregularities in plan (torsional buildings). In previous earthquake events, such buildings have been exposed to extensive damages and even total collapse in some cases. To investigate the performance and collapse behavior of such buildings from probabilistic points of view, three-dimensional three and six-story reinforced concrete models with unidirectional mass eccentricities ranging from 0% to 30% and designed with modern seismic design code provisions specific to intermediate ductility class were subjected to nonlinear static as well as extensive nonlinear incremental dynamic analysis (IDA) under a set of far-field real ground motions containing 21 two-component records. Performance of each model was then examined by means of calculating conventional seismic design parameters including the response reduction (R), structural overstrength (${\Omega}$) and structural ductility (${\mu}$) factors, calculation of probability distribution of maximum inter-story drift responses in two orthogonal directions and calculation collapse margin ratio (CMR) as an indicator of performance. Results demonstrate that substantial differences exist between the behavior of regular and irregular buildings in terms of lateral load capacity and collapse margin ratio. Also, results indicate that current seismic design parameters could be non-conservative for buildings with high levels of plan eccentricity and such structures do not meet the target "life safety" performance level based on safety margin against collapse. The adverse effects of plan irregularity on collapse safety of structures are more pronounced as the number of stories increases.

Establishing optimal gap size for precast beam bridges with a buffer-gap-elastomeric bearings system

  • Farag, Mousa M.N.;Mehanny, Sameh S.F.;Bakhoum, Mourad M.
    • Earthquakes and Structures
    • /
    • 제9권1호
    • /
    • pp.195-219
    • /
    • 2015
  • A partial (hybrid) seismic isolation scheme for precast girder bridges in the form of a "buffer-gap-elastomeric bearings" system has been endorsed in the literature as an efficient seismic design system. However, no guides exist to detail an optimal gap size for different configurations. A numerical study is established herein for different scenarios according to Euro code seismic requirements in order to develop guidelines for the selection of optimal buffer-gap arrangements for various design cases. Various schemes are hence designed for ductile and limited ductility behavior of the bridge piers for different seismic demand levels. Seven real ground records are selected to perform incremental dynamic analysis of the bridges up to failure. Bridges with typical short and high piers are studied; and different values of initial gaps at piers are also investigated varying from a zero gap (i.e., fully locked) condition up to an initial gap at piers that is three quarters the gap left at abutments. Among the main conclusions is that the as-built initial gaps at piers (and especially large gap sizes that are ${\geq}1/2$ as-built gaps at abutments) do not practically reduce the seismic design demand and do not affect the reserve capacity of the bridge against failure for bridges featuring long piers, especially when these bridges are designed a priori for ductile behavior. To the contrary, the "buffer-gap-elastomeric bearings" system is more effective for the bridge schemes with short piers having a large difference between the stiffness of the bearings and that of their supporting (much stiffer) squat piers, particularly for designs with limited ductility. Such effectiveness is even amplified for the case of larger initial as-built gap sizes at piers.

Decision-making of alternative pylon shapes of a benchmark cable-stayed bridge using seismic risk assessment

  • Akhoondzade-Noghabi, Vahid;Bargi, Khosrow
    • Earthquakes and Structures
    • /
    • 제11권4호
    • /
    • pp.583-607
    • /
    • 2016
  • One of the main applications of seismic risk assessment is that an specific design could be selected for a bridge from different alternatives by considering damage losses alongside primary construction costs. Therefore, in this paper, the focus is on selecting the shape of pylon, which is a changeable component in the design of a cable-stayed bridge, as a double criterion decision-making problem. Different shapes of pylons include H, A, Y, and diamond shape, and the two criterion are construction costs and probable earthquake losses. In this research, decision-making is performed by using developed seismic risk assessment process as a powerful method. Considering the existing uncertainties in seismic risk assessment process, the combined incremental dynamic analysis (IDA) and uniform design (UD) based fragility assessment method is proposed, in which the UD method is utilized to provide the logical capacity models of the structure, and the IDA method is employed to give the probabilistic seismic demand model of structure. Using the aforementioned models and by defining damage states, the fragility curves of the bridge system are obtained for the different pylon shapes usage. Finally, by combining the fragility curves with damage losses and implementing the proposed cost-loss-benefit (CLB) method, the seismic risk assessment process is developed with financial-comparative approach. Thus, the optimal shape of the pylon can be determined using double criterion decision-making. The final results of decision-making study indicate that the optimal pylon shapes for the studied span of cable-stayed bridge are, respectively, H shape, diamond shape, Y shape, and A shape.

Influence of bi-directional seismic pounding on the inelastic demand distribution of three adjacent multi-storey R/C buildings

  • Skrekas, Paschalis;Sextos, Anastasios;Giaralis, Agathoklis
    • Earthquakes and Structures
    • /
    • 제6권1호
    • /
    • pp.71-87
    • /
    • 2014
  • Interaction between closely-spaced buildings subject to earthquake induced strong ground motions, termed in the literature as "seismic pounding", occurs commonly during major seismic events in contemporary congested urban environments. Seismic pounding is not taken into account by current codes of practice and is rarely considered in practice at the design stage of new buildings constructed "in contact" with existing ones. Thus far, limited research work has been devoted to quantify the influence of slab-to-slab pounding on the inelastic seismic demands at critical locations of structural members in adjacent structures that are not aligned in series. In this respect, this paper considers a typical case study of a "new" reinforced concrete (R/C) EC8-compliant, torsionally sensitive, 7-story corner building constructed within a block, in bi-lateral contact with two existing R/C 5-story structures with same height floors. A non-linear local plasticity numerical model is developed and a series of non-linear time-history analyses is undertaken considering the corner building "in isolation" from the existing ones (no-pounding case), and in combination with the existing ones (pounding case). Numerical results are reported in terms of averages of ratios of peak inelastic rotation demands at all structural elements (beams, columns, shear walls) at each storey. It is shown that seismic pounding reduces on average the inelastic demands of the structural members at the lower floors of the 7-story building. However, the discrepancy in structural response of the entire block due to torsion-induced, bi-directionally seismic pounding is substantial as a result of the complex nonlinear dynamics of the coupled building block system.

Performance evaluation of a seismic retrofitted R.C. precast industrial building

  • Nastri, Elide;Vergato, Mariacristina;Latour, Massimo
    • Earthquakes and Structures
    • /
    • 제12권1호
    • /
    • pp.13-21
    • /
    • 2017
  • Recent seismic events occurred in Italy (Emilia-Romagna 2012, Abruzzo 2009) and worldwide (New Zealand 2010 and 2011) highlighted some of the weaknesses of precast concrete industrial buildings, especially those related to the connecting systems traditionally employed to fasten the cladding panels to the internal framing. In fact, one of the most commons fails it is possible to observe in such structural typologies is related to the out-of-plane collapse of the external walls due to the unsatisfactory behaviour of the connectors used to join the panels to the perimeter beams. In this work, the strengthening of a traditional industrial building, assumed as a case study, made by precast reinforced concrete is proposed by the adoption of a dual system allowing the reinforcement of the structure by acting both internally; by pendular columns and, externally, on the walls. In particular, traditional connections at the top of the walls are substituted by devices able to work as a slider with vertical axis while, the bottom of the walls is equipped with two or more hysteretic dampers working on the uplift of the cladding panels occurring under seismic actions. By means of this approach, the structure is stiffened; obtaining a reduction of the lateral drifts under serviceability limit states. In addition, its seismic behaviour is improved due to the additional source of energy dissipation represented by the dampers located at the base of the walls. The effectiveness of the suggested retrofitting approach has been checked by comparing the performance of the retrofitted structure with those of the structure unreinforced by means of both pushover and Incremental Dynamic Analyses (IDA) in terms of behaviour factor, assumed as a measure of the ductility capacity of the structure.