• Title/Summary/Keyword: Inconel 713

Search Result 13, Processing Time 0.024 seconds

Friction Welding of Inconel 713C and SCM 440 (Inconel 713C와 SCM 440의 마찰용접)

  • 조현수;서성재
    • Journal of Welding and Joining
    • /
    • v.15 no.6
    • /
    • pp.78-84
    • /
    • 1997
  • Friction welding technique was studied to weld the turbine wheel and shaft of a turbocharger. The welding parameters were selected to investigate the effects of variables on welding quality of Inconel 713C and SCM 440. Experimental results showed that the turbine wheel and shaft could be successfully welded by friction welding. The heat affected zone was identified to be 2 mm from the weld seam. After welding, the hardness profile was found to have sudden increase and decrease for inconel 713C and SCM 440 respectively. Tensile strength of welded specimens was higher than the required strength for all of the studied welding parameters. The central portion of fracture surfaces by bending had no defects such as crack.

  • PDF

Corrosion Behavior of Inconel Alloys in a Hot Lithium Molten Salt under an Oxidizing Atmosphere (고온 리튬용융염계 산화분위기에서 Inconel 합금의 부식거동)

  • Cho, Soo-Hang;Seo, Chung-Seok;Yoon, Ji-Sup;Park, Seoung-Won
    • Korean Journal of Materials Research
    • /
    • v.16 no.9
    • /
    • pp.557-563
    • /
    • 2006
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. So, it is essential to choose the optimum material for the process equipment handling molten salt. In this study, corrosion behavior of Inconel 713LC, MA 754, X-750 and 718 in the molten salt $LiCl-Li_2O$ under an oxidizing atmosphere was investigated at $650^{\circ}C$ for $72{\sim}216$ hours. Inconel 713LC alloy showed the highest corrosion resistance among the examined alloys. Corrosion products of Inconel 713LC were $Cr_2O_3,\;NiCr_2O_4$ and NiO, and those of Inconel MA 754 were $Cr_2O_3\;and\;Li_2Ni_8O_{10}$ while $Cr_2O_3,\;NiFe_2O_4\;and\;CrNbO_4$ were produced from Inconel 718. Also, corrosion products of Inconel X-750 were found to be $Cr_2O_3,\;NiFe_2O_4\;and\;(Cr,Nb,Ti)O_2$. Inconel 713LC showed local corrosion behavior and Inconel MA 754, 718, X-750 showed uniform corrosion behavior.

Evaluation of the Laser Weldability of Inconel 713C alloy (인코넬 713C 합금의 레이저 용접성 평가)

  • Kang, Minjung;Kim, Cheolhee;Kim, Young-Min
    • Journal of Welding and Joining
    • /
    • v.35 no.1
    • /
    • pp.68-73
    • /
    • 2017
  • During welding of Ni based superalloy, hot cracking was usually happen in the fusion zone of a weld. In this study, the laser weldability of Inconel 713C alloy for the turbocharger wastegate valve (WGV) was evaluated with various welding conditions, such as laser power, welding speed, shielding gas. Welding conditions were optimized by bead-on-plate (BOP) and butt joint welding. For the evaluation of laser weldability, bead shapes and weld microstructures were investigated and tensile test was conducted. The fracture surfaces were investigated for the understanding the cause of the fracture.

High-temperature Oxidation of Ni-based Inconel 713 Alloys at 800-1100℃ in Air (니켈기 인코넬 713합금의 800-1100℃에서의 대기중 고온산화)

  • Lee, Dong-Bok
    • Journal of Surface Science and Engineering
    • /
    • v.44 no.5
    • /
    • pp.196-200
    • /
    • 2011
  • The Ni-based superalloy, Inconel 713, was oxidized at $800{\sim}1100^{\circ}C$ for 50 and 100 hours in air. It displayed excellent oxidation resistance, forming a few micrometer-thick scales. The major scale was ${\alpha}-Al_2O_3$. Other scales formed were $TiO_2$, $NiAl_2O_4$ and $Cr_2O_3$. Generally, uniform oxidation occurred over the alloy surface, resulting in the formation of ${\alpha}-Al_2O_3$ with and without $Cr_2O_3$. Other oxides such as $TiO_2$ and $NiAl_2O_4$ sometimes also formed. Locally, nodular oxidation occurred at the nodules that consisted of diverse alloying elements. The scales were adherent at $800^{\circ}C$. However, they spalled a little at $900{\sim}1100^{\circ}C$.

Corrosion Behavior of Ni-Base Superalloys in a Hot Molten Salt (고온 용융염계에서 Ni-Base 초합금의 부식거동)

  • Cho, Soo-Haeng;Kang, Dae-Seong;Hong, Sun-Seok;Hur, Jin-Mok;Lee, Han-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.9
    • /
    • pp.577-584
    • /
    • 2008
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. So, it is essential to choose the optimum material for the process equipment handling molten salt. In this study, corrosion behavior of Inconel 713LC, Inconel MA 754, Nimonic 80A and Nimonic 90 in the molten salt $LiCl-Li_2O$ under an oxidizing atmosphere was investigated at $650^{\circ}C$ for 72~216 hrs. Inconel 713LC alloy showed the highest corrosion resistance among the examined alloys. Corrosion products of Inconel 713LC were $Cr_2O_3$, $NiCr_2O_4$ and NiO, and those of Inconel MA 754 were $Cr_2O_3$ and $Li_2Ni_8O_{10}$ while $Cr_2O_3$, $LiFeO_2$, $(Cr,Ti)_2O_3$ and $Li_2Ni_8O_{10}$ were produced from Nimonic 80A. Also, corrosion products of Nimonic 90 were found to be $Cr_2O_3$, $(Cr,Ti)_2O_3$, $LiAlO_2$ and $CoCr_2O_4$. Inconel 713LC showed local corrosion behavior and Inconel MA 754, Nimonic 80A, Nimonic 90 showed uniform corrosion behavior.

Recovery of Mo by liquid-liquid extraction from synthetic leaching solution of spent Inconel 713C super alloy and preparation of Mo compounds (폐 인코넬계(Inconel 713C)내열합금 모의 침출액으로부터 액-액 추출법에 의한 Mo의 회수 및 Mo 화합물 제조)

  • Ahn, Jong-Gwan;Kim, Da-young;In, Yong-Hyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.403-409
    • /
    • 2018
  • Inconel 713C which of a commercial Ni super alloy have the composition of 70 % Ni, 12 % Cr, 6 % Al and 4 % Mo. Mo is very expensive and have some economic value to recover in the alloy. In this study, liquid-liquid exraction(solvent extraction and stripping) has been performed to separate Mo from the synthetic leaching solution of spent Inconel 713C alloy and prepare to Mo powder by dying, evaporation and heat treatment. The experiments were conducted by using synthetic leaching solution which was prepared $NaMoO_4$ $2H_2O$ by dissolved in distilled water. Alamine336 and Cyanex272 dissolved in kerosene were used as extractants. The extraction percentage of Mo by Alamine336 is 99 % in the condition of the range of pH 1 to 4 and 1 % of concentration of Alamine336. The stripping solutions are used by HCl, $H_2SO_4$ and $HNO_3$ solutions and the concentrations were controlled by distilled water. The concentrations of HCl, $H_2SO_4$ and $HNO_3$ as stripping solutions are increased, the stripping percentages of Mo are increased and the stripping percentage of Mo by $HNO_3$ is higher than other stripping solutions. After liquid-liquid extraction and heat treatment, $MoO_3$ powder which of the purity of 97.5 % was prepared.

Basic Study for Solvent Extraction Separation of Mo from Synthetic Leaching Solution of Inconel713C by Alamine336 (Inconel713C 모사 용액으로부터 Alamine336을 통한 Mo의 용매추출분리를 위한 기초 연구)

  • Park, Sang-ryul;Ahn, Jong-gwan
    • Resources Recycling
    • /
    • v.27 no.4
    • /
    • pp.16-22
    • /
    • 2018
  • Inconel713C which of a commercial Ni super alloy have the compositions of 70 wt.% Ni, 12 wt.% Cr, 6 wt.% Al and 4 wt.% Mo. In this study, solvent extraction has been performed to separate Mo from the synthetic leaching solution, formation of Inconel713C alloy similarly and is found the optimum conditions of recovery of Mo from the leaching solution. The effects of some variables, such as the nature and concentration of the extractants, $H_2SO_4$ concentrations, and the presence of impurities were investigated. The extraction percentage of Mo by Cyanex272 is 96% in the condition of pH 1 and 4% of concentration of Cyanex272 but Alamine336 is 99% in the condition of the range of pH 1 to 4 and 1 wt.% of concentration of Alamine336. In the case of Alamine336, the extraction percentage of Mo is increased by increasing of the concentration of Alamine336. The optimum condition of this experiment is pH 1 in aqueous phase, 1% concentration of Alamine336 and activation ratio of $H_2SO_4$ 1:0.5.

The Effect of Heat Treatment on the Microstructures and Mechanical Properties of Inconel 713C Alloy Vacuum Investment Castings (진공 정밀주조한 Inconel 713C 합금의 조직과 기계적 성질에 미치는 열처리의 영향)

  • Yoo, Byung-Ki;Choi, Hak-Kyu;Park, Heung-Il;Jeong, Hae-Yong
    • Journal of Korea Foundry Society
    • /
    • v.40 no.2
    • /
    • pp.16-24
    • /
    • 2020
  • The effect of a heat treatment on the microstructure and mechanical properties of Inconel 713C alloy vacuum investment castings were investigated. The microstructure of the as-cast state was observed, showing well-developed dendrite structures and distributed carbide particles and solidified massive precipitates in the grain or grain boundary during solidification, in this case the γ′ phase and MC particles. During a heat treatment, the γ phase matrix was reinforced by solid solution elements, carbide particles from the film morphology precipitated along the grain boundary, and many micro-precipitates of second γ′ phases 0.2 ㎛~2 ㎛ in size were newly formed in the γ phase matrix according to SEM-EDS analysis results. The tensile strength at a high temperature (850℃) decreased slightly becoming comparable with the room-temperature result, while the hardness value of the specimen after the vacuum heat treatment increased by approximately 19%, becoming similar to that of the as-cast condition. However, the impact values at room temperature and low temperature (-196℃) were approximated; this alloy was mostly not affected by an impact at a low temperature. In the observations of the fracture surface morphologies of the specimens after the tensile tests, the fractures at room temperature were a mix of brittle and ductile fractures, and an intergranular fracture in the inter-dendrite structure and some dimples in the matrix were observed, whereas the fractures at high temperatures were ductile fractures, with many dimples arising due to precipitation. It was found that a reinforced matrix and precipitates of carbide and the γ′ phase due to the heat treatment had significant effects, contributing greatly to the excellent mechanical properties.

A Study on the Recycling Process of Nickel Recovery from Inconel 713C Scrap based on Hydrometallurgy (인코넬 713C 스크랩으로부터 니켈 자원 회수를 위한 습식제련 기반 재활용공정 연구)

  • Min-seuk Kim;Rina Kim;Kyeong-woo Chung;Jong-Gwan Ahn
    • Resources Recycling
    • /
    • v.33 no.4
    • /
    • pp.36-46
    • /
    • 2024
  • We investigated a hydrometallurgical process of nickel recovery from Inconel 713C scrap. The process proceeded with a series of i) comminution of pyrometallurgical treated scrap, ii) sulfuric acid leaching, iii) solvent extraction of unreacted acid, molybdenum, aluminum, and precipitation of chromium, iv) crystallization of nickel sulfate by vacuum evaporation, and v) nickel electrowinning. The nickel-aluminum intermetallic compound, Ni2Al3, was formed by the pyrometallurgical pretreatment readily grounded under 75 ㎛. Sulfuric acid leaching was done for 2 hours in 2 mol/L, 20 g/L solid/liquid ratio, and 80 ℃. It revealed that over 98 % of nickel and aluminum was dissolved, whereas 28 % of molybdenum was. A nickel sulfate solution with 2.34 g/L for the crystallization of nickel sulfate hydrate was prepared via solvent extraction and precipitation. Over 99 % of molybdenum and aluminum and 93 % of chromium was removed. Nickel metal with 99.9 % purity was obtained by electrowinning with the nickel sulfate monohydrate in the cell equipped with anion exchange membranes for catholyte pH control. The membrane did not work well, resulting in a low current efficiency of 73.3 %.