• Title/Summary/Keyword: Inclined angle

Search Result 523, Processing Time 0.027 seconds

Pseudo-static solution of active earth pressure against relief shelf retaining wall rotating around heel

  • Yun Que;Jisong Zhang;Chengcheng Long;Fuquan Chen
    • Geomechanics and Engineering
    • /
    • v.39 no.1
    • /
    • pp.87-104
    • /
    • 2024
  • In practical engineering, the design process for most retaining walls necessitates careful consideration of seismic resistance. The prevention of retaining wall overturning is of paramount importance, especially in cases where the foundation's bearing capacity is limited. To research the seismic active earth pressure (ES) of a relieving retaining wall rotating around base (RB), the shear dissipation graphs across various operating conditions are analyzed by using Optum software, and the earth pressure in each region was derived by the inclined strip method combined with the limit equilibrium method. By observing shear dissipation graphs across various operating conditions, the distribution law of each sliding surface is summarized, and three typical failure modes are obtained. The corresponding calculation model was established. Then the resultant force and its action point were obtained. By comparing the theoretical and numerical solutions with the previous studies, the correctness of the derived formula is proved. The variation of earth pressure distribution and resultant force under seismic acceleration are studied. The unloading plate's position, the wall heel's length, and seismic acceleration will weaken the unloading effect. On the contrary, the length of the unloading plate and the friction angle of the filling will strengthen the unloading effect. The derived formula proposed in this study demonstrates a remarkable level of accuracy under both static and seismic loading conditions. Additionally, it serves as a valuable design reference for the prevention of overturning in relieving retaining walls.

A Study on Improvement for Fishing Gear and Method of Pound Net - I - Net Shapes of the Commerical Net in the Flow - (정치망 어구어법의 개발에 관한 연구-I - 현용어구의 흐름에 대한 형상 변화 -)

  • Yun, Il-Bu;Lee, Ju-Hee;Kwon, Byeong-Guk;Cho, Young-Bok;Yoo, Jae-Bum;Kim, Seong-Hun;Kim, Boo-Young
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.4
    • /
    • pp.268-281
    • /
    • 2004
  • A study was carried out in order to estimate the deformation of the pound net according to the current by the model test in the circulating water channel. The tension of the frame rope and the variation of net shape were measured to investigate the deforming of the model pound net in the flow. The results are obtained as follows; 1. The experimental equation between tensions (R) of the frame rope and velocity (ν)was found to be R=$19.58v^{1.98}$($r^2$=0.98) in case of the upperward flow with fish court net and R=$26.90v^{1.72}$($r^2$=0.95)at the upperward flow with bag net according to the velocity from 0.0m/s to 0.6m/s, respectively. 2. As the variation of flow speed inside of the model net was gradually decreased according as which is passed through netting panels, in case of the upperward flow with fish court net, the flow speed was about 70% of initial flow speed at 0.1m/s, 60% at 0.2m/s, 50% at 0.3m/s and 40% 0.4~0.6m/s at the measurement point(h) inside of the first bag net, respectively. In case of the upperward flow with bag net, as the flow speed was steeply decreased according as which if passed through the second bag net, it was 30~60% of the initial flow speed and was 20~30% inside of the first bag net and was about 10~20% inside of the inclined passage net. 3. In case of the upperward flow with fish court net, the variation of deformed angle of fish court net was from 0$^{\circ}$ to 70$^{\circ}$and that of inclined passage net was from 0$^{\circ}$ to 63$^{\circ}$and that of the second bag net was from 0$^{\circ}$ to 47$^{\circ}$ . 4. In case of the upperward flow with fish court net, the variation of deformed angle of the second bag net was changed from 0$^{\circ}$ to 70$^{\circ}$and that of the inclined passage net was from 0$^{\circ}$ to 55$^{\circ}$ and that of the fish court net was from 0$^{\circ}$ to 50$^{\circ}$. The depth ratio of the first bag net was changed from 0% to 35% and that of the second bag net was from 0% to 20% and that of the inclined passage net was from 0% to 35%. In the flow speed 0.5m/s, the inclined passage net was raised up to the entry of the bag net and then prevented it more over 90%. 5. To be increased the opening volume of pound net, it needs to attach the added weight outside of the fish court net, inclined passage net and bag net. At the same time, it needs to adjust the tension of the twine for maintenance of the shape.

Experimental Study on Downwardly Spreading Flame over Inclined Polyethylene-insulated Electrical Wire with Applied AC Electric Fields (교류전기장이 인가된 폴리에틸렌으로 피복된 기울어진 전선을 통해 하향으로 전파하는 화염에 대한 실험적 연구)

  • Lim, Seung Jae;Park, Jeong;Kim, Min Kuk;Chung, Suk Ho;Osamu, Fujita
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.4
    • /
    • pp.1-7
    • /
    • 2014
  • An experimental study on downwardly spreading flame over slanted electrical wire, which is insulated by Polyethylene (PE), was conducted with applied AC electric fields. The result showed that the flame spread rate decreased initially with increase in inclination angle of wire and then became nearly constant. The flame shape was modified significantly with applied AC electric field due to the effect of ionic wind. Such a variation in flame spread rate could be explained by a thermal balance mechanism, depending on flame shape and slanted direction of flame. Extinction of the spreading flame was not related to angle of inclination, and was described well by a functional dependency upon the frequency and voltage at extinction.

Mixed Mode Crack Extension in Orthotropic Materials (직방성 복합재료에서 혼합모드 균열의 진전)

  • Kang, Seok-Jin;Cho, Hyung-Seok;Lim, Won-Kyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.10
    • /
    • pp.35-41
    • /
    • 2005
  • The problem of an orthotropic composite material with a central crack inclined with respect to the principal axes of material symmetry is studied. The material is subjected to uniform biaxial loading along its outer boundaries. The normal stress ratio theory is applied to predict initial crack extension behavior in cracked composite materials. The dependence of the crack extension angle with respect to the biaxial loading and the principal axes of material symmetry is discussed. Our analysis shows significant effects of horizontal loading, crack angle and fiber angle on the crack extension.

Turbulent Heat Transfer of an Oblique Impinging Jet on a Concave Surface (오목표면에 분사되는 경사충돌제트의 난류열전달 현상에 관한 연구)

  • 임경빈;최형철;이세균;최상경;김학주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.4
    • /
    • pp.371-380
    • /
    • 2000
  • The turbulent heat transfer from a round oblique impinging jet on a concave surface were experimentally investigated. The transient measurement method using liquid crystal was used in this study. In this measurement, a preheated wall was suddenly exposed to an impinging jet while recording the response of liquid crystals to measure surface temperature. The Reynolds numbers were 11000, 23000 and 50000, nozzle-to-surface distance ratio was from 2 to 10 and the surface angles were a =$0^{\circ}\;15^{\circ},\;30^{\circ}and\;40^{\circ}$. Correlations of the stagnation point Nusselt numbers with Reynolds number, jet-to-surface distance ratio and dimensionless surface angle, which account for the surface inclined angle, are presented. The maximum Nusselt numbers, in this experiment, occurred in the direction of upstream. The displacement of the maximum Nusselt number from the stagnation point increases with increasing surface angle or decreasing nozzle-to-surface distance. In this experiment, the maximum displacement is about 0.7 times of the jet nozzle diameter when surface curvature, D/d is 10.

  • PDF

Development of Empirical Correlation to Calculate Pool Boiling Heat Transfer Coefficient on Inclined Tube Surface (경사진 튜브 표면의 풀비등 열전달계수 계산을 위한 실험식 개발)

  • Kang, Myeong-Gie
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.8
    • /
    • pp.527-533
    • /
    • 2016
  • A new empirical correlation was developed to identify the effect of an inclination angle on pool boiling heat transfer coefficient of a tube submerged in the saturated water at atmospheric pressure. Through the experiments and the survey of published results 431 data points were obtained and the nonlinear least square method was used as a regression technique. The heat flux of the tube($0{\sim}120kW/m^2$), inclination angle($0^{\circ}{\sim}90^{\circ}$), and the length divided by the diameter of a tube(18~42.52) were selected as major parameters. The newly developed correlation well predicts the experimental data within ${\pm}18%$, with some exceptions.

Computation of Noise from a Rotating Cylinder (회전하는 실린더에 의한 공력소음의 계산)

  • Jang, S.W.;Lee, S.;Kim, J.H.;Han, J.O.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.413-418
    • /
    • 2000
  • The noise sources from a rotating cylinder were identified to describe the blunt trailing edge noise. Firstly, LES formulation was applied to a non-orthogonal grid system and was tested with three-dimensional cross-flow over a cylinder with a yaw angle. The computed far-field noise showed peaks at Strouhal numbers ranging from 0.135 to 0.165 for the yawed cylinder flow with end-plates placed at both extremes under the yaw angle of $30^{\circ}$ and Reynolds number of $1.15{\times}10^4$. It was observed that the slantwise shedding at angles other than the cylinder yaw angle is intrinsic to inclined cylinder, with the result of shedding angles between $15^{\circ}$ and $31^{\circ}$. To study the trailing-edge wake thickness and unsteady lift-coefficient distribution in the span-wise direction of a rotating fan blade, the flows around rotating cylinder with 1,000 rpm were simulated and the far-field noise was exactly computed using the Ffowcs-Williams and Hawkings equation with quadrupole source term. The incoming velocities and stagnant zones were continuously distributed along the cylinder, and their changes made the Strouhal sheddings to occur at different phases even at almost same Strouhal number.

  • PDF

Influence of the Groove Angle on Arc Characteristics in Pulsed GMA Weaving Welding (펄스 GMA 위빙 용접에서 그루브형상에 따른 아크특성에 관한 연구)

  • Choi, Kwang-Deok;Cho, Won-Ik;Kim, Cheol-Hee;Na, Suck-Joo
    • Journal of Welding and Joining
    • /
    • v.27 no.4
    • /
    • pp.67-72
    • /
    • 2009
  • In this paper, arc characteristics of V groove joints using pulsed GMA welding were found out. The bevel angles of $22.5^{\circ}$ and $30.0^{\circ}$ were chose to make the V groove configuration with the groove angles of $45^{\circ}$ and $60.0^{\circ}$, respectively. In the experiment, the arc current waveform measurement and the high speed photography were taken to investigate the arc characteristics for a single-beveled asymmetric workpiece. Consequently, the welding current was changed abnormally around the edge of groove. As the arc moved close to the groove face, the welding current was increased rapidly because the welding arc was affected by the inclined surface. Also the welding current waveforms were measured for the double-sided symmetric workpiece to verify the previous measurements for the single-beveled workpiece, and similar current waveforms were found.

Surface Characteristics and Tracking Resistance of Epoxy Insulating Materials against Ultraviolet (자외선 열화에 의한 에폭시 절연재료의 표면특성과 내트래킹성)

  • Cho, Han-Goo;Yoo, Dae-Hoon;Kang, Hyung-Kyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.495-496
    • /
    • 2008
  • This paper describes the influence of Ultra-violet irradiation on time to tracking resistance of epoxy insulating materials by use of the inclined plane test. And, the influence of surface degradation was evaluated through several method such as measurement of contact angle, surface roughness, using a scanning electron microscopy. As the 1000 hours of the surface degradation with UV-CON, the flashover time decreases at different rates depending on epoxy resin and silicone rubber specimen. As the duration of the surface degradation with UV-CON is prolonged, the contact angle of epoxy resin decreases at the rate of degradation time, while that of silicone rubber was not exchanged. It is assumed that this phenomenon is related to the decrease in hydrophobicity of the surface of the materials. Also, as to epoxy resin, the decrease of hydrophobicity due to surface degradation with UV-CON is greater than that resulting from surface degradation with WOM. The UV radiation produced chalking and crazing on the surface of the insulating materials specimen.

  • PDF

A Study on the Thermal Response Characteristics of Snow Removing Facilities using Heat Pipe (히트파이프식 제설설비의 열응답 특성에 관한 연구)

  • Lee, Yong-Soo;Jang, Yeong-Suk
    • Solar Energy
    • /
    • v.17 no.4
    • /
    • pp.45-56
    • /
    • 1997
  • The purpose of this research was to study the characteristics of heat transfer of snow removing facilities using heat pipe by experimental method. Heat pipes was constructed a flexible tube connected between evaporator and condenser ends for altitude adjustment of evaporator and it was constituted an internal diameter of 25.4mm, a length of 950mm for heating section and a length of 6000mm for condenser section with copper material for closed system. The results showed that the effect of heat transfer was increased when inclination angle and inlet temperature of heating water increased. Wall temperature response by inclined angle $4.5^{\circ}c-9^{\circ}c$ and working fluid amount 0.96 from to 1.3 times of evaporator volume were better than those of other working fluid and angle.

  • PDF