• Title/Summary/Keyword: Incineration heat

Search Result 70, Processing Time 0.027 seconds

Analysis of the Economic Efficiency of the District Heating and Gas Engine Co-Generation System Compared with the Central Heating System (중앙난방방식을 지역난방과 소형열병합난방 방식으로 전환 시 경제성 비교 분석)

  • Kim, Kyu Saeng
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.10
    • /
    • pp.544-551
    • /
    • 2015
  • This study was conducted to determine the LCC of apartment complexes with district heating and a cogeneration system. For the purpose of analyzing LCC according to the size of the apartment complex, 500, 1,500, and 4,000-unit model apartments were selected. Analysis was performed on the design of the heating system and the life cycle cost including total construction cost, maintenance and operation cost for the duration of the project period (15 years). According to the calculated results, 1) The initial cost of the cogeneration system for 500, 1,500, and 4,000-unit apartments is higher than that of the district heating system by 20%, 13%, and 12%, respectively. 2) In the case of the cogeneration system, the payback period by electric generation was found to be 5.21, 4.92 and 4.47 years, and saving cost was calculated to be 29 billion won, 94 billion won and 262 billion won after the payback period for 500, 1,500, and 4,000-unit apartments, respectively. 3) The LCC values of the cogeneration system were 1.12, 1.07 and 1.06 times larger than those of the district system according to the size of the apartment complex. In this study, the district heating system was found to be more efficient than the cogeneration system in terms of LCC reduction. 4) District heating is affected by fuel bills, so energy efficiency should be improved through recovering waste heat (incineration heat, etc.). Also, district cooling should be provided according to heat use to keep the temperature high in winter and low in summer.

The Influence of KCl on the Hydration Property of OPC (시멘트의 수화 특성에 미치는 KCl의 영향)

  • Lee, Eui-Hak;Jeong, Chan-Il;Park, Soo-Kyung;Lee, Kyung-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.10
    • /
    • pp.943-947
    • /
    • 2002
  • In order to examine the possibility of incineration of inderstrial by-product and wastes which contains a large percentage of chlorine by the cement kiln, measured heat of hydration, setting time, flow, change of length, compressive strength of OPC by the amount of KCl. The result was that a shorter setting time, a lower flow, a increasing the degree of initial shrinkage, a increasing of compressive strength before 3 days and decrease after 7 days by the induction period is shorter as promote the hydration with KCl.

Research for Pyrolysis of Metal Caps (병뚜껑의 열분해에 대한 연구)

  • Hwang, Jae-young;Jin, Dal-saem;Seo, Moo-Lyong
    • Journal of Environmental Science International
    • /
    • v.19 no.12
    • /
    • pp.1355-1359
    • /
    • 2010
  • The application of metal caps has been continuously increased as real life are extended. Metal caps is usually made of aluminum and polyethylene(PE) as packing. Since metal caps contain 75% aluminum on a weight basis, metal caps may be a valuable source when these were properly recovered. The recovery methods of metal caps have mechanical peeling and incineration. However these are either hard to apply in some case or environmentally unacceptable. So in this investigation, recovery method of aluminum from metal caps was investigated using pyrolysis. The result shows that pyrolysis temperature and pyrolysis time was $450^{\circ}C$ and 120min. respectively. Also 100% of aluminum was recovered from metal caps. Heat content of recovered oil was high enough to use as a fuel representing 7,425.0, 7,793.1, 7,583.2, 7,726.2(cal/g). Heavy metal contens in the oil were under regulatory limit indicating.

Characterization of Toxic Pollutants in Ash and Flue Gas from Gasification Incinerator of Waste Tires (폐타이어 건류 소각에서 발생되는 재와 배기 가스에서의 독성 오염 물질의 정량)

  • Koo, Ja Kong;Seo, Young Hwa;Kim, Seok Wan;Yoo, Dong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.213-220
    • /
    • 1993
  • The problem of disposing of huge quantities of used tires is of growing concern to every country. As an economical solid waste management, a gasification followed by incineration process was applied to scrap tires to recover heat and to reduce waste volume for final landfill disposal. The gasification temperature, combustible and non-combustible gasified products and possibly produced air pollutants were predicted by changing equivalent mole ratios of carbon to oxygen by a chemical equilibrium model. For a risk assessment of ash toxic pollutants including heavy metals and toxic organics were thoroughly analyzed. Gasification bottom ash contained much more toxic organic compounds than fly ash, whereas fly ash contained higher concentration of heavy metals such as Pb and Cd. Pretreatment or secure landfill technology is suggested for a safe management of ash produced from the gasification incinerators.

  • PDF

Study for a Secondary Air Affecting Fluid Flow in a Solid Waste Incinerator (쓰레기 소각로의 2차공기가 유동현상에 미치는 현상 연구)

  • Lee, Geum-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.9
    • /
    • pp.2924-2932
    • /
    • 1996
  • As the environmental pollution can be greatly reduced and the waste heat can be also recovered through a combustion of municipal solid waste, the incineration begins to be highlighted recently in our country. But it is very difficult to be operated with constant combustion conditions for a long time as the domestic waste is composed of various components, contains a large percentage of water, and has a low heating value. Therefore, the cold flow test and partial hot flow test were conducted in the incinerator by use of injection angles of a secondary air affecting fluid flow as the first action to maintain the optimum combustion conditions. A model to a scale of 1:10 was designed and manufactured through the similarity of model and prototype flows. Velocities and temperatures were measured through the experiment. From the results, fluid flows of secondary air obtained from partial hot flow test correspond almost well with those of main flow obtained from cold flow test. Consequently, injection angles of secondary air are proved to affect main flow decisively.

Characteristics of electric power for thermoelectric generating module (열전발전용 소자를 이용한 열전발전기의 발전 특성)

  • Woo, B.C.;Lee, H.W.;Lee, D.Y.;Kim, B.S.;Kim, B.G.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1614-1616
    • /
    • 2000
  • The purpose of this study is to manufacture and test a thermoelectric generator which converts unused energy from close-at-hand sources, such as garbage incineration heat and industrial exhaust, to electricity. A manufacturing process and the properties of a thermoelectric generator are discussed before simulating the thermal stress and thermal properties of a thermoelectric module located between an aluminum tube and alumina plate. We can design the thermoelectric modules having the good properties of thermoelectric generation. Resistivity of thermoelectric module for thermoelectric generation consisting of 62 cells was $0.15{\sim}0.4{\Omega}$. The maximum power of thermoelectric generator using thermoelectric generating modules can be defined as temperature function, and in this case it can be analogized the linear relation between current and voltage characteristics as function of temperature. The thermoelectric generator using 128 generating modules was assembled with 4 parallel connected modules sets composed with 32 directly connected modules.

  • PDF

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2015 (설비공학회 분야의 최근 연구 동향 : 2015년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.6
    • /
    • pp.256-268
    • /
    • 2016
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2015. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering were carried out in the areas of flow, heat and mass transfer, cooling and heating, and air-conditioning, the renewable energy system and the flow inside building rooms. Research issues dealing with air-conditioning machines and fire and exhausting smoke were reduced. CFD seems to be spreading to more research areas. (2) Research works on heat transfer area were carried out in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the economic analysis of GHG emission, micro channel heat exchanger, effect of rib angle on thermal performance, the airside performance of fin-and-tube heat exchangers, theoretical analysis of a rotary heat exchanger, heat exchanger in a cryogenic environment, the performance of a cross-flow-type, indirect evaporative cooler made of paper/plastic film. In the area of pool boiling and condensing, the bubble jet loop heat pipe was studied. In the area of industrial heat exchangers, researches were performed on fin-tube heat exchanger, KSTAR PFC and vacuum vessel at baking phase, the performance of small-sized dehumidification rotor, design of gas-injection port of an asymmetric scroll compressor, effect of slot discharge-angle change on exhaust efficiency of range hood system with air curtain. (3) In the field of refrigeration, various studies were carried in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, a cold-climate heat pump system, $CO_2$ cascade systems, ejector cycles and a PCM-based continuous heating system were investigated. In the alternative refrigeration/energy system category, a polymer adsorption heat pump, an alcohol absorption heat pump and a desiccant-based hybrid refrigeration system were investigated. In the system control category, turbo-refrigerator capacity controls and an absorption chiller fault diagnostics were investigated. (4) In building mechanical system research fields, eighteen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the user and location awareness technology applied dimming lighting control system, the lighting performance evaluation for light-shelves, the improvement evaluation of air quality through analysis of ventilation efficiency and the evaluation of airtightness of sliding and LS window systems. The subjects of building energy were worked on the energy saving estimation of existing buildings, the developing model to predict heating energy usage in domestic city area and the performance evaluation of cooling applied with economizer control. The studies were also performed related to the experimental measurement of weight variation and thermal conductivity in polyurethane foam, the development of flame spread prevention system for sandwich panels, the utilization of heat from waste-incineration facility in large-scale horticultural facilities.

Effect of Shifts in Food Waste Policy on the Municipal Solid Waste Composition (음식물 폐기물 정책 변화가 도시생활폐기물의 조성변화에 미치는 영향)

  • Yoon, Seok-Pyo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.1
    • /
    • pp.39-45
    • /
    • 2008
  • As a waste management tool, the prohibition of landfilling of food waste has enforced since 2005. the composition of municipal solid waste (MSW) has changed dramatically. In this study, MSW generated from a small city collected once a year in 2004, 2005 and 2007, to qualify the characteristics of MSW before and after implementation of the tool. The prohibition of landfilling of food waste dramatically reduces food waste in MSW to 5.5 weight %, and on the other hand results to increase papers to 50.6 % and plastics to 22.6 %, The bulk density lowers to 50 %, which newly propose the necessity of volume reduction and incineration of MSW to ensure efficient transport and disposal. As water content of MSW reduces to 15.9 %, lower heat value of MSW after prohibition of landfilling of food waste increase to 3565.6 kcal/kg. Mitigation of bad smell and waste leachate with lower contaminants are recommendable as a kind of positive effects benefited by the tool.

  • PDF

Digestate residues analysis under elevated heat regime by using DNS method

  • Hanif, Mohamad Haziq;Kamaruddin, Mohamad Anuar;Norashiddin, Faris Aiman;Zawawi, Mohd Hafiz
    • Advances in environmental research
    • /
    • v.9 no.1
    • /
    • pp.55-64
    • /
    • 2020
  • The problems with unsorted municipal waste are always associated with disposal issues as it requires a large area for landfilling or high energy used for incineration. In recent years, an autoclaving technique has been considered a promising approach which could minimize the volume of organic waste from being directly disposed or incinerated. In this work, an attempt was done to study the saccharification potential of organic residues under elevated temperature Thermal treatment involving hot water bath was applied to treat the organic residue ranging from 60℃ to 100℃ for 30 and 60 minutes. The result obtained showed an increasing trend for the concentration of glucose and carbohydrate. However, the result for lignocellulose content which contains various component includes extractive, holocellulose, hemicellulose, cellulose and lignin show variation. Based on the thermal treatment carried out, the result indicated that the trend of glucose and carbohydrate content. The highest percentage of glucose that can be obtained 978.602 ㎍/ml which could be obtained at 90℃ at 60 minutes. The carbohydrate also shows an increasing trend with 0.234 mg/ml as the highest peak achieved at 80℃ for 30 minutes treatment. However, it was found that the lignocellulose content varies with temperature and time. The statistical analysis was carried out using two-ways ANOVA shows an interaction effect between the independent variables (temperature and contact time) and the saccharification effects on the food wastes. The result shows a variation in the significant effect of independent variables on the changes in the composition of food waste.

Pyrolysis oil refining by Fly-ash absorption (Fly-ash 흡착기법을 이용한 열분해유 정제)

  • Im, EunJung;Kim, SungHyun;Chun, ByungHee;SunWoo, Hwan;Jeong, IckCheol
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.222-222
    • /
    • 2011
  • Plastic product is increasing by the growth of its demand and most of refused plastics are incinerated or reclaimed. However, the refused plastic is not easily decomposed and has the environmental problem with its various toxic gas in case of incineration. Therefore, many countries such as USA, Japan, Germany and other developed industrial countries as well as Korea are interested in studying the recyclable resource of refused plastic. The macromolecular waste pyrolysis has the advantage of collecting of raw materials in high price and can at least get fuel gas or oil with high heat capacity. It also discharges low waste gas and low toxic gas including SOx, NOx and HCl heavy metals. However, pyrolyzed oil includes enough excess unsaturated hydrocarbons to form tar, which can cause the nozzle of engines to plug when pyrolyzed oil is used as fuel. Activated carbon was proven to have prominent adsorption capability among the other adsorbents that were mainly composed of carbon. This study examined the possibility of application in activated charcoal of its solid formation by analysing the feature of pyrolysis which is one of the chemical recycling methods and getting chemical analysis of the product and activated energy. Analyze the element of the oil produced by pyrolysis using GC-MS. The experiment of tar adsorption using fly-ash showed that fly-ash improved the optical intensity of pyrolyzed oil and decreased oxygen compounds in the pyrolyzed oil.

  • PDF