• Title/Summary/Keyword: Incineration heat

Search Result 70, Processing Time 0.027 seconds

Life cycle impact assessment of the environmental infrastructures in operation phase: Case of an industrial waste incineration plant

  • Kim, Hyeong-Woo;Kim, Kyeong-Ho;Park, Hung-Suck
    • Environmental Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.266-276
    • /
    • 2017
  • A life cycle impact assessment was applied in an industrial waste incineration plant to evaluate the direct and indirect environmental impacts based on toxicity and non-toxicity categories. The detailed life cycle inventory of material and energy inputs and emission outputs was compiled based on the realistic data collected from a local industrial waste incineration plant, and the Korean life cycle inventory and ecoinvent database. The functional unit was the treatment of 1 tonne of industrial waste by incineration and the system boundary included the incineration plant and landfilling of ash. The result on the variation of the impact by the unit processes showed that the direct impact was decreased by 79.3, 71.6, and 90.1% for the processes in a semi dry reactor, bag filter, and wet scrubber, respectively. Considering the final impact produced from stack, the toxicity categories comprised 91.7% of the total impact. Among the toxicity impact categories, the impact in the eco-toxicity category was most significant. A separate estimation of the impact due to direct and indirect emissions showed that the direct impact was 97.7% of the total impact. The steam recovered from the waste heat of the incineration plant resulted in a negative environmental burden.

New Trend of Incineration Technology for Waste Treatment (폐기물 소각기술의 변천과 신기술 동향)

  • Kim Seong-Jung;Park Hyun-Seo
    • Resources Recycling
    • /
    • v.13 no.4
    • /
    • pp.46-52
    • /
    • 2004
  • The present main research direction of waste treatment is the development of incineration system for low pollution. Also, heat value of waste is increased because of the rising of living standard, environmental consideration and collection of sorted waste for recycling. Therefore, many researches have been continued for solving ash problem including heavy metals, dioxin problem and high energy efficiency by use of high heat value. This study is described for the facilities of pyrolysis system, pyrolysis-melting system, pyrolysis-gasification melting system.

A Study on Unused Energy Management of Jeju City Waste Environment Center (제주시 폐기물환경사업소의 미활용에너지 활용방안 연구)

  • Kim, S.H.;Kwon, K.R.;Park, Y.C.
    • Journal of Power System Engineering
    • /
    • v.8 no.1
    • /
    • pp.48-54
    • /
    • 2004
  • In this study, waste heat of Jeju City Waste Environment Center is investigated and the utilization method is suggested with economical analysis of additional investment that needed for new facility. Energy balance of the typical facilities is considered in this study such as incineration plant and LFG power plant. The payback period of the investment which is used for the LFG power plant waste heat utilization facility is about 2.4 years and the economic profit of the facility during 10 years operation is up to 926 million won.

  • PDF

Environmental impact evaluation and improvement measure of incineration plant by life cycle assessment (전과정평가를 이용한 소각시설의 환경영향평가 및 개선방안)

  • Kim, Hyeong-Woo;Kim, Kyeong-Ho;Park, Hung-Suck
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.4
    • /
    • pp.88-100
    • /
    • 2013
  • This study evaluated the direct and indirect environmental impacts of various unit operations of a industrial waste incineration plant by using the life cycle assessment tool and reviewed the improvement plan. During the incineration process, the direct environmental impact was decreased with decrease in emission of various air pollutants by incorporating an air pollution prevention facilities. However, an increase in indirect environmental impacts was observed as a consequence of resources and energy of consumption at the various operational facilities. Consequently, quantitative direct and indirect impact were 89.1%, 10.9%, respectively. The environmental impact analysis of system revealed the highest impact of incineration followed by the impacts of other unit processes such as semidry reactor, and bag-filter. The various air pollutants and ashes generated during the incineration process caused the most significant environmental impact. Among the various categories of environmental impact, global warming accounted the highest impact(more than 85%) followed by eutrophication, and abiotic depletion. As a result of the avoided impact by the utilization of heat generated during the waste incineration process, using an incineration heat for steam and electricity obtained the impact reduction of 45.5%, 19.8%. So, during siting of new incineration plant, the utilization of steam generated from the waste combustion is highly considered to reduce the environmental impact.

Study on the Heat Recovery Design Methods for the Flue Gas from Combustion and Incineration Processes (연소 또는 소각 과정에서 발생하는 배기가스의 폐열 회수 설계 방법에 관한 연구)

  • Lee, Chan;Jung, Bong-Jin
    • Clean Technology
    • /
    • v.5 no.2
    • /
    • pp.53-61
    • /
    • 1999
  • Presented is the design method of the waste heat recovery facility for the flue gas produced from combustion and incineration processes of large industrial environmental waste treatment and cogeneration plants. The present study assumes the basic design concept of wast heat recovery facility as the combination of waste heat recovery boiler and steam power cycle, and then describes the modeling technique, the design concept and criteria of each component of waste heat recovery facility. In addition, the present study investigates how the thermal performance of waste heat recovery facility varies with boiler operating pressure and waste heat recovery heat exchanger design at the same flue gas condition.

  • PDF

A Study on the Problems of Incinerating Facility and Plans to Improve in Regard to Separate Discharge of Food Waste (음식물류폐기물 분리배출에 따른 소각시설의 문제점과 개선방안에 관한 연구)

  • Kim, Seong-Jung;Kim, Dong-Hyuk
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.4
    • /
    • pp.74-81
    • /
    • 2008
  • Due to separate discharge of food waste, large incinerating facilities for municipal waste show the phase change that combustible contents have been increasing while the concentrations of water have been decreasing when wastes are brought in. This phase change of wastes leads to the increase of exothermic value when wastes are carried in, which causes the problems to make the durability of incinerating facilities weak and lower the capacities of them. In accordance with these problems, this study was carried out to present effective plans to operate incinerating facilities as the quantities of municipal wastes of Incheon have been gradually increasing. We examined the problems caused by the phase change of municipal waste in Incheon and managing plans to control the amounts of heat output when intermixed incineration of food waste is conducted. It is concluded that we could carry out the optimized operation of incinerating facilities as well as produce economic effect to reduce processing costs when we conduct the intermixed incineration of food waste and municipal waste, in the trend that the amounts of heat output generated by wastes are gradually increasing. This is because this operation of intermixing incineration contributes to reducing the amount of exothermic heat.

  • PDF

Research on Managing Incineration Facility according to Prediction of Change in Amount of Waste (폐기물 발생량 변화 예측에 따른 소각시설 운영에 관한 연구)

  • Ha, Sang An
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.1
    • /
    • pp.23-30
    • /
    • 2012
  • In the state that re-evaluation of calculating optimum amount of incineration in the future is needed, as considering the amount of waste, increase of heat value and change in floating population in each area in city B, the purpose of this research was to predict optimum available capacity in incineration plant and to study alternatives for the amount of disposal in each incineration plant based on the available capacity that was predicted. As a result of predicting the change in population based on progress of population in city B in the past, it is expected that an overall population is decreasing, but in some areas, population is concentrated due to increased apartment complexes, showing similar figures as the present. Moreover, when predicting the amount of waste through forecasting population, it is considered that the amount of waste by decreased population is also decreasing. However, the amount of combustible component among a total amount of waste is expected to increase, so it is predicted that the amount of incineration and combustible component will be reasonable except D incineration plant, Therefore, D incinerating plant showed 72.7% of rate of utilization of incineration facility compared to 59.1% of national rate. However, if shortfall of waste in the future can be used wisely in other areas, the use of renewable energy using burner useless heat can be maximized.

A study on the evaluation of lower heating value using heat balance method in industrial waste incineration facilities (열정산방법을 이용한 사업장폐기물 소각시설의 저위발열량 분석·평가 연구)

  • Ko, Youngjae;Kang, Jun-Gu;Kwon, Young-Hyun;Yoo, Ha-Nyoung;Kwon, Jun-Hwa;Jang, Mi-Jeong;Jeon, Tae-Wan;Shin, Sun-Kyoung
    • Analytical Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.31-38
    • /
    • 2018
  • The energy recovery rate estimation method proposed through the Waste Control Act does not take into account the energy used in practice. In addition, the method for measuring a lower heating value, which is the main factor of the energy recovery rate, was carried out through a small sampling amount, and thus the representative value of the waste was not reflected. With the revised estimation method (Notification No. 2015-215 of the Ministry of Environment), the energy recovery rate should be estimated based on the actual amount of energy used, and a heat balance method was proposed as a way to estimate the lower heating value. In this study, the lower heating value was estimated for seven industrial waste incineration facilities according to the revised estimation method. All data used in the estimations were achieved from measurement instruments applied to each of the incinerators and through direct measurements taken by the operators for the purposes of calculation. As a result, the lower heating value was estimated to be about 3,404.7 kcal/kg for the seven industrial waste incineration facilities.

Problem and Optimum Operational Strategy of Multipurpose Reservoir in Korea (우리나라 다목적 Dam 운영의 문제점과 개선방안)

  • 심순보
    • Journal of the Korean Professional Engineers Association
    • /
    • v.19 no.1
    • /
    • pp.25-32
    • /
    • 1986
  • The number of visiters to Bukhan Mt. national park, generation quantity of solid waste and collection system were researched to consider a counterplan for the pollution control of the national park and study for developing the effective treatment of solid waste was tried through the proximate analysis of each component containing. Results obtained in this study were summerized as follows; The great part of visitors go on an excursion to the Bukhan Mt. national park during July and August and also, the solid waste was generated nearly a half of the total amount at the same period. The major collection facilities in the national park were waste basket and incineration box. But the incineration box was too large in volume and very far in distance, and its collection period was irregular, so it was cause to the congestion of solid waste and bad smell and dirty. Therefore, to complete collection of solid waste, we must set up the waste basket which able to find within 40~50m from the origination place of solid waste and induce the visitors to throw the solid waste. It was obtained as moisture content: 48.5 wt%, volatile solid: 28.4wt%, fixed solid: 23.1 wt%, lower heating value: 1,320kca1/kg from experimental analysis of solid waste. According to this analysis, the incineration operation is possible, but the generation quantity of solid waste was too small to construct incineration plant for heat recovery. It was found that it is suitable for the aerobic composting by mixing with the night soil which generate in the national park after the recovery of resources such as metals, glasses and plastics.

  • PDF