• Title/Summary/Keyword: Incident photon-to-current efficiency

Search Result 27, Processing Time 0.027 seconds

Light Scattering Amplification on Dye Sensitized Solar Cells Assembled by Hollyhock-shaped CdS-TiO2 Composites

  • Lee, Ga-Young;Lee, Hu-Ryul;Um, Myeong-Heon;Kang, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.3043-3047
    • /
    • 2012
  • To investigate the scattering layer effect of a $TiO_2$ multilayer in dye-sensitized solar cells (DSSCs), we designed a new DSSC system, assembled with a CdS-$TiO_2$ scattering layer electrode. A high-magnification SEM image exhibited hollyhock-like particles with a width of 1.5-2.0 ${\mu}m$ that were aggregated into 10-nm clumps in a hexagonal petal shape. The efficiency was higher in the DSSC assembled with a CdS-$TiO_2$ scattering layer than in the DSSC assembled with $TiO_2$-only layers, due to the decreased resistance in electrochemical impedance spectroscopy (EIS). The short-circuit current density ($J_{sc}$) was increased by approximately 7.26% and the open-circuit voltage ($V_{oc}$) by 2.44% over the 1.0 wt % CdS-$TiO_2$ composite scattering layer and the incident photon-to-current conversion efficiency (IPCE) in the maximum peak was also enhanced by about 5.0%, compared to the DSSC assembled without the CdS-$TiO_2$scattering layer.

Effects of the Sputtering Thickness and the Incident Angle of Pt Film Deposition as a Counter Electrode for Dye-sensitized Solar Cells (염료감응형 태양전지의 상대전극 Pt 필름 두께와 증착 각도가 효율에 미치는 영향에 관한 연구)

  • Kim, Hee-Je;Yeo, Tae-Bin;Park, Sung-Joon;Kim, Whi-Young;Seo, Hyun-Woong;Son, Min-Kyu;Chae, Won-Yong;Lee, Kyoung-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.588-593
    • /
    • 2010
  • Sputter deposition on a Pt counter electrode was studied using radio frequency (RF) plasma as the improvement of incident photon to current conversion efficiency (IPCE) for dye-sensitized solar cells (DSCs). Effects of the sputtering thickness and the incident angle on a Pt counter electrode for DSCs were investigated. Experiments to get the optimal sputtering time for the performance of the DSCs were carried out. And it is found that the optimized sputtering time was 120 seconds, in addition, the incident angles of the substrate was adjusted from $0^{\circ}$ to $60^{\circ}$. The maximum efficiency of 5.37% was obtained at the incident angle of $40^{\circ}$ with an active cell area of $1cm^2$.

A Study on the Efficiency Improvement of Dye Sensitized Solar Cell (염료감응형 태양전지의 효율향상에 관한 연구)

  • Kim, Hee-Je;Seok, Young-Kuk;Kim, Ming-Chul
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.06a
    • /
    • pp.467-470
    • /
    • 2009
  • A novel 8 V DC power source with an external series-parallel connection of 50 Dye-Sensitized Solar Cells(DSSCs) has been proposed. One DSC has the optimized length to width ratio of $5.2{\times}2.6$ cm and an active area 8 $cm^2$($4.62{\times}1.73$ cm) which attained a conversion efficiency of 4.2%. From the electrochemical impedance spectroscopic analysis, it was found that the resistance elements related to the Pt electrode and electrolyte interface behave like that of diode and the series resistance corresponds to the sum of the other resistance elements. In addition, the TEMoo mode pulsed Nd:YAG laser beam is used to improve the incident photon to current efficiency(IPCE) of DSSC. From this result, this novel 8V-0.38A DC power source shows stable performance with an energy conversion efficiency of about 4.5% under 1 sun illumination(AM 1.5, Pin of 100 $mW/cm^2$).

  • PDF

Photocatalytic and photoelectrocatalytic properties of anodic titanium dioxide nanotubes based on anodizing conditions (양극산화 조건에 따른 이산화티타늄 나노튜브의 광촉매 및 광전기화학적 특성)

  • Yeonjin Kim;Rin Jung;Jaewon Lee;JeongEun Yoo;Kiyoung Lee
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.2
    • /
    • pp.137-146
    • /
    • 2023
  • Nanosized TiO2 has been widely investigated in photoelectrochemical or photocatalytic applications due to their intrinsic properties such as suitable band position, high photocorrosion resistance, and surface area. In this study, to achieve the high efficiency in photoelectrochemical and photocatalytic performance, TiO2 nanotubular structures were formed by anodization at various temperatures and times. The morphological and crystal structure of the anodized TiO2 nanotubes (NTs) were characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD). The photoelectrochemical (PEC) properties and incident photon-to-current conversion efficiency (IPCE) of the TiO2 NTs were studied with different lengths and morphologies. From the detailed investigations, the optimum thickness of TiO2 nanotubes was 3 ㎛. Moreover, we found that the optimum photocatalytic pollutant removal efficiency of TiO2 nanotubes for photodegradation of Rhodamine B (RhB) under simulated solar light was 5.34 ㎛ of tube length.

Dye-sensitized solar cells using size dependent SBM binder

  • Park, Gyeong-Hui;Kim, Eun-Mi;Jo, Hong-Gwan;Wang, Gyo;Hong, Chang-Guk;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.116-116
    • /
    • 2009
  • $TiO_2$ pastes was synthesized to obtained of high efficiency dye-sensitized solar cells using size dependent co-polymer. SBM co-polymer binder is consist of styrene, n-butyl acrylate, and methacrylic acid (SBM) monodisperse co-polymer binder materials and this $TiO_2$ pastes were applied of dye-sensitized solar cells (DSSCs). The photoanodes were characterized by ATR-Fourier Transform spectrometer, X-ray diffraction (XRD) and morphology was investigated by field emission scanning electron microscopy (FE-SEM). The photoelectrochemical properties of the thin films and the performance of DSSCs were measured by photovoltaic-current density, AC impedance and monochromatic incident photon-to-current conversion efficiency (IPCE). DSSC based on the 100nm size co-polymer binder was obtained conversion efficiency of 8.1% under irradiation of AM 1.5(100 $mWcm^2$).

  • PDF

Eu-doped LGF Luminescent Down Converter Possible for TiO2 Dye Sensitized Solar Cells

  • Kim, Hyun-Ju;Song, Jae-Sung;Lee, Dong-Yun;Lee, Won-Jae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.3
    • /
    • pp.89-92
    • /
    • 2004
  • For improving solar efficiencies, down conversion of high-energy photons to visible lights is discussed. The losses due to thermalization of charge carriers generated by the absorption of high-energy photons, can largely be reduced in a solar cell if more than one electron-hole pair can be generated per incident photon. The solar cell was constructed of dye-sensitized anatase-based TiO$_2$, approximately 30nm particle size, 6$\mu\textrm{m}$thickness, and 6${\times}$6$\textrm{mm}^2$ active area, Pt counter electrode and I$_3$$\^$-/I$_2$$\^$-/ electrolyte. After correction for losses due to light reflection and absorption by the conducting glass, the conversion of photons to electric current is practically quantitative in the plateau region of the curves. The incident photon to current conversion efficiency(IPCE) of N3 used as a dye in this work is about 80% at around 590nm and 610nm which is the emission spectrum of Eu doped LGF. The Eu doped LGF powder was prepared by conventional ceramic process, and used as a down converter for DSC after spin coated on the slide glass and fired.

[ $a-Si:H/{\mu}c-Si:H$ ] thin-film tandem solar cells (비정질/마이크로 탠덤 구조형 실리콘 박막 태양전지)

  • Lee, Jeong-Chul;Song, Jin-Soo;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.228-231
    • /
    • 2006
  • This paper briefly introduces silicon based thin film solar cells: amorphous (a-Si:H), microcrystalline ${\mu}c-Si:H$ single junction and $a-Si:H/{\mu}c-Si:H$ tandem solar cells. The major difference of a-Si:H and ${\mu}c-Si:H$ cells comes from electro-optical properties of intrinsic Si-films (active layer) that absorb incident photon and generate electron-hole pairs. The a-Si:H film has energy band-gap (Eg) of 1.7-1.8eV and solar cells incorporating this wide Eg a-Si:H material as active layer commonly give high voltage and low current, when illuminated, compared to ${\mu}c-Si:H$ solar cells that employ low Eg (1.1eV) material. This Eg difference of two materials make possible tandem configuration in order to effectively use incident photon energy. The $a-Si:H/{\mu}c-Si:H$ tandem solar cells, therefore, have a great potential for low cost photovoltaic device by its various advantages such as low material cost by thin-film structure on low cost substrate instead of expensive c-Si wafer and high conversion efficiency by tandem structure. In this paper, the structure, process and operation properties of Si-based thin-film solar cells are discussed.

  • PDF

Effect of the Linkers Between 9,9-Dimethylfluorenyl Terminal Moiety and a-Cyanoacrylic Acid Anchor on the $\lambda_{max}$ of the UV Spectrum and the Energy Efficiency in Dye-Sensitized Solar Cell (DSSC)

  • Lee, Min-U;Cha, Su-Bong;Lee, Jeong-Ryeol;Park, Se-Ung;Kim, Gyeong-Gon;Park, Nam-Gyu;Lee, Deok-Hyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.316-316
    • /
    • 2010
  • Six metal-free organic dyes having thiophene (1), benzene-thiophene (2), thiophene-benzene (3), thiophene-pyridine(4), thiophene-thiophene (5), and pyridine (6) linkers between 9,9-dimethylfluorenyl terminal group and $\alpha$-cyanoacrylic acid anchor were synthesized. Among them, organic dye 5 showed the longest ${\lambda}}max$ value (424 nm) in UV-Vis absorption spectrum, better incident monochromatic photon-to-current conversion efficiency (IPCE), highest short circuit photocurrent density (JSC, 9.33 mA2/cm2), and highest overall conversion efficiency ($\eta$, 3.91%).

  • PDF

Effect of Cations on the open-Circuit Photovoltage and the Charge-Injection Efficiency of Dye-Sensitized Nanocrys-talline Rutile $TiO_2$ Films

  • Park, Nam Gyu;Jang, Sun Ho;Kim, Gang Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.10
    • /
    • pp.1047-1048
    • /
    • 2000
  • Dye-sensitized nanocrystalline rutile $TiO_2$ solar cells were prepared, and the influence of Li+ and 1,2-dimethyl-3-hexyl imidazolium ions in the electrolyte on the photovoltaic properties was compared. The electrolyte con-taining Li+ ions produced a lower open-circuit photovoltage than the electrolyte with 1,2-dimethyl-3-hexyl im-idazolium ions, suggesting that the adsorption of Li+ ions to the rutile $TiO_2$ surface causes a shift in the band edges toward more positive potentials. At the same time, both the short-circuit photocurrent and the maximum value of the incident-photon-current conversion efficiency (IPCE) of the electrolyte containing Li+ ions were relatively higher. Data analysis suggests that presence of adsorbed Li+ ions improves via the phenomenon of band-edge movement the charge-injection efficiency by altering both the energy and number of excited state levels of the dye that participate in electron injection.

Fabrication of Hot Electron Based Photovoltaic Systems using Metal-semiconductor Schottky Diode

  • Lee, Young-Keun;Jung, Chan-Ho;Park, Jong-Hyurk;Park, Jeong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.305-305
    • /
    • 2010
  • It is known that a pulse of electrons of high kinetic energy (1-3 eV) in metals can be generated with the deposition of external energy to the surface such as in the absorption of light or in exothermic chemical processes. These energetic electrons are not in thermal equilibrium with the metal atoms and are called "hot electrons" The concept of photon energy conversion to hot electron flow was suggested by Eric McFarland and Tang who directly measured the photocurrent on gold thin film of metal-semiconductor ($TiO_2$) Schottky diodes [1]. In order to utilize this scheme, we have fabricated metal-semiconductor Schottky diodes that are made of Pt or Au as a metallic layer, Si or $TiO_2$ as a semiconducting substrate. The Pt/$TiO_2$ and Pt/Si Schottky diodes are made by PECVD (Plasma Enhanced Chemical Vapor Deposition) for $SiO_2$, magnetron sputtering process for $TiO_2$, e-beam evaporation for metallic layers. Metal shadow mask is made for device alignment in device fabrication process. We measured photocurrent on Pt/n-Si diodes under AM1.5G. The incident photon to current conversion efficiency (IPCE) at different wavelengths was measured on the diodes. We also show that the steady-state flow of hot electrons generated from photon absorption can be directly probed with $Pt/TiO_2$ Schottky diodes [2]. We will discuss possible approaches to improve the efficiency of photon energy conversion.

  • PDF