• 제목/요약/키워드: InGaN Multi-quantum Well

검색결과 51건 처리시간 0.046초

InGaN계 다중양자우물구조를 병렬 집적화한 백색광소자의 특성 연구 (White Light Emitting Diode with the Parallel Integration of InGaN-based Multi-quantum Well Structures)

  • 김근주;이기형
    • 반도체디스플레이기술학회지
    • /
    • 제3권4호
    • /
    • pp.39-43
    • /
    • 2004
  • The parallel multi-quantum well structures of blue and amber lights were designed and grown in metal-organic chemical vapor deposition by utilizing integration process on epitaxial layers. Samples were deposited for 5 periods-InGaN multi-quantum well layers for blue light emission and partially etched in order to regrow the 3 periods-InGaN multi-quantum wells for amber light. The blue and amber photoluminescence spectra were observed at the peak wavelengths of 475 and 580 nm, respectively. The chromatic coordinates of the white emitting diode were 0.31 and 0.34.

  • PDF

양자우물 두께와 인듐조성 변화에 의한 470 mm RC-LED InGaN/GaN 양자우물 구조의 최적화 (Optimization of the InGaN/GaN quantum well structure for 470 mm RC-LED with variation of quantum well thickness and Indium composition)

  • 임재문;박창영;박광욱;이용탁
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2009년도 동계학술발표회 논문집
    • /
    • pp.509-510
    • /
    • 2009
  • The optical gain of InGaN/GaN multi quantum well (MQW) resonant-cavity light-emitting diode (RC-LED) with different Indium composition and well width in the multi-quantum well was investigated. The optimized optical gain was obtained by simulating active region InGaN/GaN with some test values of well width and Indium composition. By simulation tool, we could simulate on several cases, and then we got exact well width and Indium composition that makes optical gain maximum due to the short wavelength of 470 nm for blue light emission.

  • PDF

Time-Resolved Photoluminescence Measurement of Frenkel-type Excitonic Lifetimes in InGaN/GaN Multi-quantum Well Structures

  • Kim, Keun-Joo
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 제5회 영호남 학술대회 논문집
    • /
    • pp.121-125
    • /
    • 2003
  • Time-resolved photoluminescence from InGaN/GaN multi-quantum well structures was investigated for two different shapes of square- and trapezoidal wells grown by metal-organic chemical vapor deposition. To compare to the conventional square well structure with a radiative recombination lifetime of 0.170 nsec, the large value of lifetime of 0.540 nsec from trapezoidal well were found at room temperature. This value is similar to the value for GaN host material indicating no confinement effect of quantum well. Furthermore, the high resolution transmission electron microscopy image provides the In clustering effect in the trapezoidal well structure.

  • PDF

Time-Resolved Photoluminescence Measurement of Frenkel-type Excitonic Lifetimes in InGaN/GaN Multi-quantum Well Structures

  • Shin, Gwi-Su;Hwang, Sung-Won;Kim, Keun-Joo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제4권5호
    • /
    • pp.19-23
    • /
    • 2003
  • Time-resolved photoluminescence from InGaN/GaN multi-quantum well structures was investigated for two different shapes of square-and trapezoidal wells grown by metal-organic chemical vapor deposition. To compare to the conventional square well structure with a radiative recombination lifetime of 0.170 nsec, the large value of lifetime of 0.540 nsec from trapezoidal well were found at room temperature. This value is similar to the value for GaN host material indicating no confinement effect of quantum well. Furthermore, the high resolution transmission electron microscopy image provides the In clustering effect in the trapezoidal well structure.

다양한 In 조성을 가진 InGaN/GaN Multi Quantum Well의 효과적인 광전기화학적 물분해 (Dependence of Doping on Indium Content in InGaN/GaN Multiple Quantum Wells for Effective Water Splitting)

  • 배효정;방승완;주진우;하준석
    • 마이크로전자및패키징학회지
    • /
    • 제25권3호
    • /
    • pp.1-5
    • /
    • 2018
  • 본 연구에서는 InGaN/GaN multi quantum well (MQW)에서 Indium (In) 도핑효과에 따른 광전기화학적 특성을 관찰하였다. 기판으로는 Sapphire을 사용하였고, 각 Quantum well (QW)을 구성하고 있는 InGaN의 조성을 다르게 하였다. 투과도 측정 결과 일정한 In 조성을 가진 InGaN/GaN MQW에 비해 각 QW의 In 조성을 다르게 한 InGaN/GaN MQW에서 흡수도가 향상되는 것을 확인할 수 있었다. 이는 각각 다른 In 조성을 가진 InGaN 층이 더 넓은 영역의 스펙트럼 에너지를 가지는 빛을 흡수하기 때문인 것으로 생각된다. 광학적 특성을 평가하기 위해 진행한 상온 photoluminescence (PL) 실험을 진행한 결과, 역시 다양한 In 조성을 가진 InGaN/GaN MQW이 더 넓은 파장에서 발광이 나타나는 것을 확인할 수 있었다. 이들 샘플에 대한 광전기화학적 특성평가를 통하여, gradation In 조성을 가지고 있는 InGaN/GaN MQW이 일정한 In 조성을 가지는 InGaN/GaN MQW에 비해 광전기화학적 물분해 능력이 월등히 향상됨을 확인하였다.

하부 광결정에 따른 InGaN/GaN 양자우물구조의 청색발광 다이오드 발광 특성 (Bottom photonic crystals-dependent photoluminescence of InGaN/GaN Quantum-Well Blue LEDs)

  • 조성남;최재호;김근주
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.52-54
    • /
    • 2008
  • The authors investigated the InGaN/GaN multi-quantum well blue light emitting diodes with the implements of the photonic crystals fabricated at the top surface of p-GaN layer or the bottom interface of n-GaN layer. The top photonic crystals result in the lattice-dependent photoluminescence spectra for the blue light emitting diodes, which have a wavelength of 450nm. However, the bottom photonic crystal shows a big shift of the photoluminescence peak from 444 nm to 504 nm and played as a role of quality enhancement for the crystal growth of GaN thin film. The micro-Raman spectroscopy shows the improved epitaxial quality of GaN thin film.

  • PDF

Nanopatterned Surface Effect on the Epitaxial growth of InGaN/GaN Multi-quantum Well Light Emitting Diode Structure

  • Kim, Keun-Joo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제10권2호
    • /
    • pp.40-43
    • /
    • 2009
  • The authors fabricated a nanopatterned surface on a GaN thin film deposited on a sapphire substrate and used that as an epitaxial wafer on which to grow an InGaN/GaN multi-quantum well structure with metal-organic chemical vapor deposition. The deposited GaN epitaxial surface has a two-dimensional photonic crystal structure with a hexagonal lattice of 230 nm. The grown structure on the nano-surface shows a Raman shift of the transverse optical phonon mode to $569.5\;cm^{-1}$, which implies a compressive stress of 0.5 GPa. However, the regrown thin film without the nano-surface shows a free standing mode of $567.6\;cm^{-1}$, implying no stress. The nanohole surface better preserves the strain energy for pseudo-morphic crystal growth than does a flat plane.

InGaN/GaN Micro-LED구조를 위한 그래핀 양자점 기반의 산화막 기판 특성 (Characteristics of Graphene Quantum Dot-Based Oxide Substrate for InGaN/GaN Micro-LED Structure)

  • 황성원
    • 반도체디스플레이기술학회지
    • /
    • 제20권3호
    • /
    • pp.167-171
    • /
    • 2021
  • The core-shell InGaN/GaN Multi Quantum Well-Nanowires (MQW-NWs) that were selectively grown on oxide templates with perfectly circular hole patterns were highly crystalline and were shaped as high-aspect-ratio pyramids with semi-polar facets, indicating hexagonal symmetry. The formation of the InGaN active layer was characterized at its various locations for two types of the substrates, one containing defect-free MQW-NWs with GQDs and the other containing MQW-NWs with defects by using HRTEM. The TEM of the defect-free NW showed a typical diode behavior, much larger than that of the NW with defects, resulting in stronger EL from the former device, which holds promise for the realization of high-performance nonpolar core-shell InGaN/GaN MQW-NW substrates. These results suggest that well-defined nonpolar InGaN/GaN MQW-NWs can be utilized for the realization of high-performance LEDs.

Influence of Quantum well Thickness Fluctuation on Optical Properties of InGaN/GaN Multi Quantum well Structure Grown by PA-MBE

  • Woo, Hyeonseok;Kim, Jongmin;Cho, Sangeun;Jo, Yongcheol;Roh, Cheong Hyun;Kim, Hyungsang;Hahn, Cheol-Koo;Im, Hyunsik
    • Applied Science and Convergence Technology
    • /
    • 제26권3호
    • /
    • pp.52-54
    • /
    • 2017
  • An InGaN/GaN multiple quantum well (MQW) structure is grown on a GaN/sapphire template using a plasma-assisted molecular beam epitaxy (PA-MBE). The fluctuation of the quantum well thickness formed from roughly-grown InGaN layer results in a disordered photoluminescence (PL) spectrum. The surface morphologies of the InGaN layers with various In compositions are investigated by reflection high energy electron diffraction (RHEED) and atomic force microscopy (AFM). A blurred InGaN/GaN hetero-interface and the non-uniform QW size is confirmed by high resolution transmission electron microscopy (HR-TEM). Inhomogeneity of the quantum confinement results in a degradation of the quantum efficiency even though the InGaN layer has a uniform In composition.

계단형 양자우물 구조가 적용된 센서 광원 용 발광다이오드 소자 (Light Emitting Diode with Multi-step Quantum Well Structure for Sensing Applications)

  • 박성민;이승주;우자정;김유경;장수환
    • 센서학회지
    • /
    • 제32권6호
    • /
    • pp.441-446
    • /
    • 2023
  • Electrical and optical characteristics of the GaN-based light-emitting diode (LED) with the improved multi-quantum well (MQW) structure have been studied for light source in bio-sensing systems. Novel GaN/In0.1GaN/In0.2GaN/In0.1GaN/GaN and Al0.1GaN/GaN/In0.2GaN/GaN/Al0.1GaN (MQW) structures were suggested, and their radiative recombination rate, light output power, electroluminescence, and external quantum efficiency were compared with those of the conventional GaN/In0.2GaN/GaN MQW structure using device simulation. The LED with the GaN/In0.1GaN/In0.2GaN/In0.1GaN/GaN MQW structure showed an excellent recombination rate of 5.57 × 1028 cm-3·s-1 that was more than one order improvement over that of the conventional LED. In addition, the efficiency droop was relieved by the suggested stepped MQW structure.