• Title/Summary/Keyword: In-vehicle Sensor

Search Result 1,188, Processing Time 0.043 seconds

Fuzzy Sensor Algorithm for Traffic Monitoring applied by the Analytic Hierachy Processs (AHP기법을 활용한 교통량조사 퍼지센서 알고리즘)

  • Jin, Hyun-Soo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.276-285
    • /
    • 2008
  • Traffic monitoring method is mainly loop detector and piezo sensor. But this method is only detecting the number of vehicle. Monitoring traffic volume is not checking the number of vehicle but checking the length of access road, width of road, number of passing people,passing vehicle,delayed vehicle. The traffic signal control cycle is not fixed by only passing vehicle number but all related traffic proposal. This paper proposed selecting common characteristic out of each unrelated traffic proposal through Analytic Hierachy Process and this characteristic is applied to compose fuzzy sensor algorithm which find out new traffic volume concept of confusion degree. The accumulated delayed vehicle time is shorter in new fuzzy sensor algorithm applied by AHP than other traffic method

  • PDF

Throttle/Brake Combined Control for Vehicle-to-vehicle Distance and Speed Control (찻간 속도/거리제어를 위한 구동력/제동력 통합제어)

  • 이세진;이경수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.137-142
    • /
    • 2001
  • A throttle/brake control law for the intelligent cruise control(ICC) systems has been proposed in this paper. The ICC system consists of a vehicle detection sensor, the control algorithm and a throttle/brake actuators. The control performance has been investigated through vehicle tests. The test vehicle is equipped with a MMW radar sensor, a solenoid-valve-controlled Electronic-Vacuum-Booster(EVB) and a step-motor controlled throttle actuator. The results indicate the proposed throttle/brake control laws can provide satisfactory vehicle-to-vehicle distance and velocity control performance.

  • PDF

A development of Intelligent Parking Control System Using Sensor-based on Arduino

  • LIM, Myung-Jae;JUNG, Dong-Kun;KWON, Young-Man
    • Korean Journal of Artificial Intelligence
    • /
    • v.9 no.2
    • /
    • pp.29-34
    • /
    • 2021
  • In this paper, for efficient parking control, in an Arduino environment, an intelligent parking control prototype was implemented to provide parking control and parking guidance information using HC-SR2O4 and RC522. The main elements of intelligent parking control are vehicle recognition sensors, parking control facilities, and integrated operating software. Whether the vehicle is parked on the parking surface may be confirmed through sensor or intelligent camera image analysis. Parking control equipment products include parking guidance and parking available display devices, vehicle number recognition cameras, and intelligent parking assistance systems. This paper applies and implements ultrasonic sensors and RFID concepts based on Arduino, recognizes registered vehicles, and displays empty spaces. When a vehicle enters a parking space to handle this function, the automatic parking management system distinguishes the registered vehicle from the external vehicle through the RC522 sensor. In addition, after checking whether the parking slot is empty, the HC-SR204 sensor is displayed through the LED so that the driver can visually check it. RFID is designed to check the parking status of the server in real time and provide the driver with optimal route service to the parking slot.

3-Dimensional Analysis of Magnetic Road and Vehicle Position Sensing System for Autonomous Driving (자율주행용 자계도로의 3차원 해석 및 차량위치검출시스템)

  • Ryoo Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.75-80
    • /
    • 2005
  • In this paper, a 3-dimensional analysis of magnetic road and a position sensing system for an autonomous vehicle system is described. Especially, a new position sensing system, end of the important component of an autonomous vehicle, is proposed. In a magnet based autonomous vehicle system, to sense the vehicle position, the sensor measures the field of magnetic road. The field depends on the sensor position of the vehicle on the magnetic road. As the rotation between the magnetic field and the sensor position is highly complex, it is difficult that the relation is stored in memory. Thus, a neural network is used to learn the mapping from th field to the position. The autonomous vehicle system with the proposed position sensing system is tested in experimental setup.

A Study on Efficient Vehicle Classification based on 3-Piezo Sensor AVC SYSTEM (3-Piezo 센서 기반 교통량 조사시스템의 차종분류방식에 대한 연구)

  • Cho, Sung-Yun;Lee, Dong-Gyu;Ruy, Seung-Ki
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.25-31
    • /
    • 2013
  • The AVC System which has operated in Highways has two-piezo sensors. In this system the piezo sensors are installed on parally each other this configuration has a defect about diversion driving and sensor damage. In this reserch, 3-Sensor AVC algorithm has been proposed which is supported enhance accuracy of the vehicle classification rate compare with usual 2-Sensor systems. This algorithm is allowed to calculate wheel tread, wheel width. The third inclinded piezo sensor can detec twheel tread, wheel width using signal processing. 3-Sensor AVC has been installed in real highway and the outcome performance has been proof.

Sensor Network System to Operate Multiple Autonomous Transport Platform (다수의 무인운송플랫폼 운용을 위한 센서 네트워크 시스템)

  • Nam, Choon-Sung;Gim, Su-Hyeon;Lee, Suk-Han;Shin, Dong-Ryeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.8
    • /
    • pp.706-712
    • /
    • 2012
  • This paper presents a sensor network and operation for multiple autonomous navigation platform and transport service. Multiple platform navigate with inside sensors and outside sensors while acquiring and process some useful information. Each platform communicates each other by navigational information through central main server. Efficient sensor network systems are considered for the scenario which some passengers call the service and the vehicle accomplish its transport service by transporting each caller to the destination by autonomous manners. In the scenario, all vehicles perform a role of sensor system to the central server and the server handles each information and integrate with faster procedure in the wireless 3G network.

Map Building Based on Sensor Fusion for Autonomous Vehicle (자율주행을 위한 센서 데이터 융합 기반의 맵 생성)

  • Kang, Minsung;Hur, Soojung;Park, Ikhyun;Park, Yongwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.14-22
    • /
    • 2014
  • An autonomous vehicle requires a technology of generating maps by recognizing surrounding environment. The recognition of the vehicle's environment can be achieved by using distance information from a 2D laser scanner and color information from a camera. Such sensor information is used to generate 2D or 3D maps. A 2D map is used mostly for generating routs, because it contains information only about a section. In contrast, a 3D map involves height values also, and therefore can be used not only for generating routs but also for finding out vehicle accessible space. Nevertheless, an autonomous vehicle using 3D maps has difficulty in recognizing environment in real time. Accordingly, this paper proposes the technology for generating 2D maps that guarantee real-time recognition. The proposed technology uses only the color information obtained by removing height values from 3D maps generated based on the fusion of 2D laser scanner and camera data.

Hardware in Loop Simulation on Autopilot Controller with MEMS AHRS for High Speed Unmanned Underwater Vehicle (MEMS형 자세측정장치를 이용한 고속 기동 무인 잠수정 자율 조종 제어기에 대한 HILS)

  • Hwang, Arom;Yoon, Seon-Il;Song, Jee-Hun
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.5
    • /
    • pp.81-86
    • /
    • 2012
  • Unmanned underwater vehicles have many applications in scientific, military, and commercial areas because of their autonomy. In many cases, an underwater vehicle adopts a control algorithm based on a tactical inertial sensor for precise control. However, a control algorithm that uses a tactical inertial sensor is unsuitable for some underwater vehicle missions such as torpedo decoys. This paper proposes a control algorithm for an unmanned underwater vehicle that does not require precise control. The control algorithm proposed for an unmanned underwater vehicle adopts a low cost MEMS inertial sensor, and simulations using the specifications of the MEMS inertial sensor under development are performed to verify the control algorithm under a real environment. The results of these simulations are presented.

Imlpememtation of the Autonomous Guided Vehicle Driving System for Durability Test (차량 내구성 테스트를 위한 무인 주행 시스템의 구현)

  • 정종원;윤영진;이영진;이만형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.608-613
    • /
    • 2002
  • In this paper we developed the MPC sensor for steering control and steering control of the AGVDS(Autonomous Guided Vehicle Driving System) for Durability test. Among durability tests, the accelerated durability test has been widely used to evaluate the durability of vehicle structure and chassis parts in a short period of time on the designed road that has severe surface conditions. However it increased the drivers fatigue mainly caused by the severe driving conditions. The driver's difficulty to maintain the constant speed and control the steering wheel reduces the reliability of test results. In addition to the general detecting sensor for steering control was restricted by surrounding condition. So we need to develop steering control sensor was robust in the bad driving condition. In this paper we developed steering control sensor using magnetic induction which is robust in the bad driving condition and implemented the AGVDS.

  • PDF

Position Recognition System for Autonomous Vehicle Using the Symmetric Magnetic Field

  • Kim, Eun-Ju;Kim, Eui-Sun;Lim, Young-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.111-117
    • /
    • 2013
  • The autonomous driving method using magnetic sensors recognizes the position by measuring magnetic fields in autonomous robots or vehicles after installing magnetic markers in a moving path. The Position estimate method using magnetic sensors has an advantage of being affected less by variation of driving environment such as oil, water and dust due to the use of magnetic field. It also has the advantages that we can use the magnet as an indicator and there is no consideration for power and communication environment. In this paper, we propose an efficient sensor system for an autonomous driving vehicle supplemented for existing disadvantage. In order to efficiently eliminate geomagnetism, we analyze the components of the horizontal and vertical magnetic field. We propose an algorithm for position estimation and geomagnetic elimination to ease analysis, and also propose an initialization method for sensor applied in the vehicle. We measured and analyzed the developed system in various environments, and we verify the advantages of proposed methods.