• 제목/요약/키워드: In-tube

검색결과 10,134건 처리시간 0.037초

동축형 스털링 맥동관 냉동기의 성능개선에 관한 연구 (A Study for Performance Improvements in the Coaxial Type Stirling Pulse Tube Cryocooler)

  • 박성제;홍용주;김효봉;김양훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1329-1334
    • /
    • 2004
  • The most compact and convenient pulse tube cryocooler for practical applications is the coaxial type. It can replace Stirling cryocooler without any change to the Dewar or the connection to the cooled devices. The experimental results of the coaxial inertance tube pulse tube cryocooler for cooling superconductor RF filter are presented in this paper. To find optimal conditions of inertance tube pulse tube cryocooler, no load temperature according to the variations of inertance tube volume, reservoir volume are measured, and the cool down characteristics at the particular conditions are presented. In case of the coaxial type inertance tube pulse tube refrigerator, cool down time is the lowest in the inertance tube diameter of 1.3 mm and inertance tube length of 1900 mm and lowest temperature is 112K. This results are not satisfactory for practical applications. So, We propose vacuum insulation between regenerator and pulse tube in the Stirling type coaxial pulse tube cryocooler. Stirling type coaxial pulse tube cryocooler with the vacuum insulation between regenerator and pulse tube was designed and manufactured by KIMM(Korea Institute of Machinery and Materials). The optimal conditions will be tested for Stirling type coaxial pulse tube cryocooler with the vacuum insulation between regenerator and pulse tube.

  • PDF

T-분지관이 부착된 벤튜리관의 유동특성과 응축수 유입에 대한 수치해석 연구 (A numerical study on the flow characteristics and condensed water inflow in the Venturi tube with T-branch tube)

  • 김승일;박상희;황정규
    • 한국산업융합학회 논문집
    • /
    • 제22권2호
    • /
    • pp.173-181
    • /
    • 2019
  • This study was carried out numerically to investigate the flow characteristics in the Venturi tube with $90^{\circ}$ T-branch tube and the inflow of condensed water into the Venturi tube from the branch tube. In this study, the diameter of the branch tube(1, 2, 3mm) and the neck diameter of the Venturi tube(0.3, 0.9, 1.5mm) were varied. The flow rate of the water at the Venturi tube inlet is 80cc/min and the water temperature is 288K. The condensed water temperature at the branch tube inlet is 355K. It was found that the velocity and pressure of the fluid near the branch point in the Venturi tube were more dependent on the diameter of the Venturi tube than the diameter of the branch tube. The temperature of the mixed water at the exit of the Venturi tube was the highest when the Venturi tube's neck diameter is 0.9mm and the branch tube diameter is 2mm. This means that the condensed water is flowing well through the branch tube.

Tube의 형상 및 표면특성에 의한 Shell-and-Tube 열교환기의 열전달 성능 (The Performance in Shell-and-Tube Heat Exchangers with Configuration and Surface Characteristics of Tube)

  • 김성일;박기호;전원표
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2316-2321
    • /
    • 2008
  • This paper presents an improved performance of heat transfer for shell-and-tube and thermal analysis based on the Bell-Delaware method for single tube. Heat transfer has been compared for a smooth tube, helical tube and surface-coated tube. In general, the results showed that properly designed helical tube and surface-coated tube offer a significant improvement in heat transfer. The numerical results derived from the Bell-Delaware method for the shell-side heat transfer coefficient were verified with experimental results. The thermal analysis aids significantly in the solution of the design problem.

  • PDF

관개용 관정의 양수량과 영향인자들의 상관관계에 관한 연구 (A Study on the Correlation between Pumping Rates and Influential Factors in Tube Wells for Irrigation)

  • 류한열;구자웅
    • 한국농공학회지
    • /
    • 제16권2호
    • /
    • pp.3410-3419
    • /
    • 1974
  • The purpose of this study is to find out the correlation between pumping rates and influential factors in the tube wells for irrigation through the analysis of various statistical data of the existing tube wells for irrigation and pumping tests. Statistical data of the existing tube wells for irrigation were collected from the authorities concerned, and pumping tests were carried out for twelve tube wells. The results of this study are summarized as follows: 1. The drilled tube wells are the most useful among various tube wells in securing pumping rates. 2. The enlargement of well diameter or the improvement of pumping equipments is necessary in drilled tube wells with pumping rates more than 806 ㎥/day, and the adjustment of foot valves or the special control of pumping equipments is necessary in tube wells with pumping rates less than 300 ㎥/day. 3. The choking of aquifer and slits can be prevented by removing earth and sand piled in tube wells. 4. The increase of well loss and the destruction of aquifer can be prevented by determining the optimum pumping rates through the step draw down tests. 5. The thickness of gravel packing is rather thin in drilled tube tube wells. 6. High pamping rates can be gained by deepening the depth of tube wells in the place the ground water storage is abundant, the thickness of aquifer is thick. and the depth of tube wells is deep. 7. Higher pumping rates can be obtained by constructing tube wells in the place where the drawdown is little and the coefficient of transmissibility is large.

  • PDF

개방관과 밀폐관의 열음향 효과에 관한 하모닉 특성 연구(2) - 2차, 3차 하모닉 (An Experimental Study on the Characteristics for Open-Tube and Closed-Tube Thermoacoustic Effects (2)- The 2nd, 3rd Harmonic)

  • 송규조;박종호;이성노
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제4권1호
    • /
    • pp.135-139
    • /
    • 2002
  • In this study, the experimental open-tube and close-tube thermoacoustic apparatuses were built. In order to determine the optimum length of resonant tube and the optimum length of stack, the resonant characteristics of thermoacoustic apparatuses were investigated, The length of resonant tube varies from 400mm to 850mm. The experimental frequency varies from 100Hz to 1000Hz. In case of the second and third harmonics, the maximum temperature difference of open-tube thermoacoustic apparatus is 53$^{\circ}C$ (resonator length: 400mm) and the maximum temperature difference of closed-tube thermoacoustic apparatus is 51$^{\circ}C$ (resonator length: 500mm). In the open-tube thermoacoustic apparatus, the peak efficiency point is about 2%, 55%, 69% in the resonant tube and in the closed-tube thermoacoustic apparatus, the peak efficiency point is about 2%, 41%, 50% in the resonant tube.

Some Aspects of Experimental in-Tube Evaporation

  • Ha, Sam-Chul
    • Journal of Mechanical Science and Technology
    • /
    • 제14권5호
    • /
    • pp.537-546
    • /
    • 2000
  • The heat transfer characteristics of refrigerant-oil mixture for horizontal in-tube evaporator have been investigated experimentally. A smooth copper tube and a micro-fin tube with nominal 9.5 mm outer diameter and 1500 mm length were tested. For the pure refrigerant flow, the dependence of the axial heat transfer coefficient on quality was weak in the smooth tube, but in the micro-fin tube, the coefficients were 3 to 10 times greater as quality increases. Oil addition to pure refrigerant in the smooth tube altered the flow pattern dramatically at low mass fluxes, with a resultant enhancement of the wetting area by vigorous foaming. The heat transfer coefficients of the mixture for low and medium qualities were increased at low mass fluxes. In the micro-fin tube, however, the addition of oil deteriorates the local heat transfer performance for most of the quality range, except for low quality. The micro-fin tube consequently loses its advantage of high heat transfer performance for an oil fraction of 5%. Results are presented as plots of local heat transfer coefficient versus quality.

  • PDF

2중관형 2상 열사이폰의 한계열유속 특성에 관한 연구 (A Study on Critical Heat Elux Characteristics in a Two-Phase Concentric-Tube Thermosyphon)

  • 김욱
    • 대한기계학회논문집B
    • /
    • 제26권10호
    • /
    • pp.1419-1426
    • /
    • 2002
  • An experimental study was made to elucidate critical heat flux(CHF) characteristics in a two-phase concentric-tube thermosyphon. The experiment was performed by using saturated water, over the experimental range of configuration: inner diameter of heated outer tube D=12mm, outer diameter of unheated inner tube do=3 to 10mm and heated tube length L=100 to 1000mm. The experiment shows that the CHF is enhanced with increase in the inner tube diameter, and that the CHF decreases beyond a certain diameter of the inner tube. There is an optimum diameter for inner tube that maximizes the CHF, for each tube length and test liquid. The CHF maximum is about two to eight times as large as that without an inner tube. For a large inner tube, the CHF characteristics is similar to that for natural convective boiling in a vertical annular tube.

Tube Hydroforming 공정의 성형성 평가 (Evaluation of Tube Hydroformability)

  • 김영석;조흥수;박춘달;김영삼;조완제
    • 소성∙가공
    • /
    • 제9권6호
    • /
    • pp.604-614
    • /
    • 2000
  • In this paper, the mechanical characteristics and fundamental mechanism of a roll-formed tube during the hydroforming process are investigated in order to obtain the ewly localization of the tube hydroforming skills which are the core production techniques for the super light weight and high safety of the car body. Also, the theoretical influences of the material variables and the processes on the formability in the tube hydroforming are studied. In addition, the techniques to evaluate the forming limit of the bulging process of a tube are developed.

  • PDF

관 형태에 따른 Shell and Tube 열교환기의 열전달계수 관한 연구 (Study on Heat Transfer Coefficient Test of Evaporator Tube in Shell and Tube Heat Exchanger by Shape)

  • 김재정;박재홍;김인관;김영수
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.1107-1112
    • /
    • 2006
  • The purpose of this study is a heat transfer coefficient test of evaporator tube in shell and tube heat exchanger by shapes, using R-404A. The experimental apparatus is designed to simulate the real heat transfer rate in one shell and tube heat exchanger. The test section is formed four type tubes that are Inner ridged tube, Corrugated tube, Turbo-C tube, Inner fin tube and shell type is formed by electrical heater. All tests were performed at a fixed refrigerant evaporator temperature at $1.5^{\circ}C,\;-3^{\circ}C$ and with mass fluxes of 29, 25 kg/hr. Heat transfer rate is calculated a enthalpy difference in test section. In experiment, heat transfer coefficient measured one by one and electrical heaters are supplemented by evaporator.

  • PDF

기관적용 저압용 vortex tube의 에너지 분리특성에 관한 실험적 연구 (An Experimental Study on the Energy Separation in a Low Pressure Vortex Tube for Engine)

  • 오동진;임석연;윤면근;류정인
    • 한국자동차공학회논문집
    • /
    • 제10권5호
    • /
    • pp.235-241
    • /
    • 2002
  • The process of energy separation in a low pressure vortex tube with air as a working medium is studied In detail. Experimental data of the temperature of the cold and hot air leaving the vortex tube are presented. The variation of the maximum wall temperature along the inner surface of the vortex tube and the temperature distribution in the vortex tube provides useful information about the location of the stagnation point of the flow field at the axis of the vortex tube. In this study Outer tube is used for the application of Diesel engine exhaust. The hot gas flow is fumed 180° and passes the outside of the vortex tube a second time heating it. From this geometric setup of a vortex tube the effects of energy separation and the prediction of the ignition of Diesel Soot is presented by experimental data.