• Title/Summary/Keyword: In-situ density

Search Result 363, Processing Time 0.023 seconds

Evaluation of Sand-Cone Method for Determination of Density of Soil (모래 치환법을 이용한 흙의 밀도 시험에 관한 고찰)

  • Park, Sung-Sik;Choi, Hyun-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.23-29
    • /
    • 2009
  • A sand-cone method is commonly used to determine the density of the compacted soils. This method uses a calibration container to determine the bulk-density of the sand for use in the test. The density of the test or compacted soil is computed on the assumption that the calibration container has approximately the same size or volume and allows the sand to fall approximately the same height as a test hole in the field. However, in most cases the size or shape of test hole is not exactly the same as the calibration container. There is certain discrepancy between sand particle settlement or arrangement in the laboratory calibration and in the field testing, which may cause an erroneous determination of in-situ density. The sand filling process is simulated in the laboratory and its effect on the determination of density is investigated. Artificially-made holes with different heights and bottom shapes are prepared to simulate various shapes of the test hole in the field. The sands with different gradations are used in the testing to examine how sand grain size influences the determination of density in the field.

  • PDF

Leakage Current of Capacitive BST Thin Films (BST 축전박막의 누설전류 평가)

  • 인태경;안건호;백성기
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.8
    • /
    • pp.803-810
    • /
    • 1997
  • Ba0.5Sr0.5TiO3 thin films were deposited by RF magnetron sputliring method in order to clarify the anneal condition and doping effect on loakage current Nb and Al were selected as electron donor and acceptor dopants respectively, in the BST films because they have been known to have nearly same ionic radii as Ti and thought to substitute Ti sites to influence the charge carrier and the acceptor state adjacent to the gram boundary. BST thin films prepared in-situ at elevated temperature showed selatively high leakage current density and low breakdown voltage. In order to achieve smooth surface and to improve electrical properties, BST thin films were deposited at room temperature and annealed at elevated temperature. Post-annealed BST thin films showed smoother surface morphology and lower leakage current density than in-situ prepared thin films. The leakage current density of Al doped thin films was measured to be around 10-8A/cm2, which is much lower than those of undoped and Nb doped BST films. The result clearly demonstrates that higher Schottky barrier and lower mobile charge carrier concentration achieved by annealing in the oxygen atmosphere and by Al doping are desirable for reducing leakage current density in BST thin films.

  • PDF

A Study of Properties of GaN grown using In-situ SiN Mask by MOCVD (In-situ SiN 박막을 이용하여 성장한 GaN 박막의 특성 연구)

  • Kim, Deok-Kyu;Park, Choon-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.6
    • /
    • pp.582-586
    • /
    • 2005
  • We have grown GaN layers with in-situ SiN mask by metal organic chemical vapor deposition (MOCVD) and study the physical properties of the GaN layer. We have also investigate the effect of the SiN mask on its optical property. By inserting a SiN mask, (102) the full width at half maximum (FWHM) decreased from 480 arcsec to 409 arcsec and threading dislocation (TD) density decreased from $3.21\times10^9\;cm^{-2}\;to\;9.7\times10^8\;cm^{-2}$. The PL intensity of GaN with SiN mask improved 2 times to that without SiN mask. We have thus shown that the SiN mask improved significantly the physical and optical properties of the GaN layer.

Mechanical Alloying and Combined Process of in-situ and ex-situ to Fabricate the ex-situ C-doped $MgB_2$ Wire (기계적 합금화 및 in-situ와 ex-situ의 혼합공정을 통한 C 도핑된 ex-situ $MgB_2$ 선재 제조)

  • Hwang, Soo-Min;Lee, Chang-Min;Lim, Jun-Hyung;Choi, Jun-Hyuk;Park, Jin-Hyun;Joo, Jin-Ho;Jun, Byung-Hyuk;Kim, Chan-Joong
    • Progress in Superconductivity
    • /
    • v.10 no.2
    • /
    • pp.79-86
    • /
    • 2009
  • We successfully fabricated C-doped ex-situ $MgB_2$ wires using two different methods such as mechanical alloying(MA) and combined process(CP) of in-situ and ex-situ. In the MA, the precursor powder was prepared with a mixture of $MgB_2$ and 1 at% C powders by planetary ball milling for 0-100 h. In the CP, on the other hand, C-doped $MgB_2$ powder was prepared with Mg, B, and C powders by in-situ process via compaction, sintering, and crushing. The powders prepared by two methods were loaded into Fe tube and then the assemblages were drawn by a conventional powder-in-tube technique. The MA treatment of C-added $MgB_2$ decreased the particles/grains size and resulted in C-doping into $MgB_2$ after sintering, improving the critical current density($J_c$) in high external magnetic field. For the C-doped $MgB_2$ wire by MA for 25 h, the $J_c$ was $4.1{\times}10^3A/cm^2$ at 5 K and 6.4 T, which was 5.9 times higher than that of pure and untreated $MgB_2$ wire. The CP also provided C-doping into $MgB_2$ and improved the $J_c$ in high magnetic field; the C-doped $MgB_2$ wire fabricated by CP exhibited a $J_c$ being 2.3 times higher than that of the ex-situ wire used commercial $MgB_2$ powder at 5 K and 6.0 T($2.7{\times}10^3A/cm^2\;vs.\;1.2{\times}10^3A/cm^2$).

  • PDF

In situ Synchrotron X-ray Techniques for Structural Investigation of Electrode Materials for Li-ion Battery (방사광 X-선을 이용한 리튬이온전지 소재의 실시간 구조 분석 연구)

  • Han, Daseul;Nam, Kyung-Wan
    • Ceramist
    • /
    • v.22 no.4
    • /
    • pp.402-416
    • /
    • 2019
  • The development of next-generation secondary batteries, including lithium-ion batteries (LIB), requires performance enhancements such as high energy/high power density, low cost, long life, and excellent safety. The discovery of new materials with such requirements is a challenging and time-consuming process with great difficulty. To pursue this challenging endeavor, it is pivotal to understand the structure and interface of electrode materials in a multiscale level at the atomic, molecular, macro-scale during charging / discharging. In this regard, various advanced material characterization tools, including the first-principle calculation, high-resolution electron microscopy, and synchrotron-based X-ray techniques, have been actively employed to understand the charge storage- and degradation-mechanisms of various electrode materials. In this article, we introduce and review recent advances in in-situ synchrotron-based x-ray techniques to study electrode materials for LIBs during thermal degradation and charging/discharging. We show that the fundamental understanding of the structure and interface of the battery materials gained through these advanced in-situ investigations provides valuable insight into designing next-generation electrode materials with significantly improved performance in terms of high energy/high power density, low cost, long life, and excellent safety.

Soil Investigation by Helical Probe Test (나선심사시험에 의한 지반조사기법)

  • ;Yokel, Felix Y.
    • Geotechnical Engineering
    • /
    • v.3 no.4
    • /
    • pp.31-40
    • /
    • 1987
  • A helical probe test (HPT) suitable for in.situ soil exploration to a shallow depth and compaction control were developed and tested in different soils alongside traditional in-situ tests, including Standard Penetration Test (SPT), Cone Penetration Test (CPT) and in-situ density test. The helical probe test is economical and can be performed by a single person. The torque necessary to insert the probe Is used as a measure of soil characteristics. It was found that: the HPT test correlates well with the SPT test and the correlation is not sensitive to the soil type; the HPT test correlates well with the CPT test, but the correlation is sensitive to the soil type; the HPT torque provides a sensitive measure of relative compaction rind in-situ dry density of compacted soils; the reverse torque ratio decreases with increasing average grain sloe.

  • PDF

In-Situ Measurement of Densification Behavior of Nano Cu Powders during Sintering (In-Situ 측정에 의한 나노 Cu 분말의 소결 공정 시 치밀화 거동)

  • Yoon, S.C.;Bok, C.H.;Kwak, E.J.;Rhee, C.K.;Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.3 s.93
    • /
    • pp.210-214
    • /
    • 2007
  • Manufacturing bulk nanostructured materials with least grain growth from initial powders is challenging because of the bottle neck of bottom-up methods using the conventional powder metallurgy via compaction and sintering. In the study, densification behavior of nano Cu powders during pressureless sintering was investigated using an in-situ optical dilatometer technique. The initial heating and steady temperature stages during the sintering of nano Cu powder compacts were observed. At the initial heating stage, the powder compact has many porosities and full densification needs high temperature and/or high pressure sintering. In the experimental analysis, changes in geometry and density were measured and discussed for optimal consolidation and densification by the in-situ optical dilatometer.

Numerical modeling of rapid impact compaction in loose sands

  • Ghanbari, Elham;Hamidi, Amir
    • Geomechanics and Engineering
    • /
    • v.6 no.5
    • /
    • pp.487-502
    • /
    • 2014
  • A three dimensional finite element model was used to simulate rapid impact compaction (RIC) in loose granular soils using ABAQUS software for one impact point. The behavior of soil under impact loading was expressed using a cap-plasticity model. Numerical modeling was done for a site in Assalouyeh petrochemical complex in southern Iran to verify the results. In-situ settlements per blow were compared to those in the numerical model. Measurements of improvement by depth were obtained from the in-situ standard penetration, plate loading, and large density tests and were compared with the numerical model results. Contours of the equal relative density clearly showed the efficiency of RIC laterally and at depth. Plastic volumetric strains below the anvil and the effect of RIC set indicated that a set of 10 mm can be considered to be a threshold value for soil improvement using this method. The results showed that RIC strongly improved the soil up to 2 m in depth and commonly influenced the soil up to depths of 4 m.

A Study on the Shear Strength Characteristics of Composited Ground applying RAP Method by Large Direct Shear Test (대형직접전단시험에 의한 RAP 복합지반의 전단강도 특성 연구)

  • Chun, Byung-Sik;Seo, Deok-Dong;Kim, Jong-San
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.82-89
    • /
    • 2004
  • To secure stability and availability of Rammed Aggregate Pier method as the foundation of a structure, the shear strength characteristics according to the area replacement ratio of RAP and the relative density of in-situ ground was studied through soil laboratory tests and large direct shear tests in a model ground. As a result, the internal friction angle tends to increase in proportion to in-situ relative density(Very Loose, Loose, Medium) in composite ground formed by the same area replacement ratio of RAP and also increase in proportion to increasing the area replacement ratio(30, 40, 50%) of RAP in the same ground condition. Furthermore, the comparative analysis between the experimental value and theoretical value of the shear strength is carried out.

  • PDF

Construction Management Method for Asphalt Paving Using Ground Penetrating Radar and an Infrared Camera (지표투과레이더와 적외선카메라를 이용한 아스팔트 포장 시공 관리 방법)

  • Baek, Jongeun;Park, Hee Mun;Yoo, Pyung Jun;Im, Jae Kyu
    • International Journal of Highway Engineering
    • /
    • v.17 no.6
    • /
    • pp.1-9
    • /
    • 2015
  • PURPOSES : The objective of this study is to propose a quality control and quality assurance method for use during asphalt pavement construction using non-destructive methods, such as ground penetrating radar (GPR) and an infrared (IR) camera. METHODS : A 1.0 GHz air-coupled GPR system was used to measure the thickness and in situ density of asphalt concrete overlay during the placement and compaction of the asphalt layer in two test construction sections. The in situ density of the asphalt layer was estimated based on the dielectric constant of the asphalt concrete, which was measured as the ratio of the amplitude of the surface reflection of the asphalt mat to that of a metal plate. In addition, an IR camera was used to monitor the surface temperature of the asphalt mat to ensure its uniformity, for both conventional asphalt concrete and fiber-reinforced asphalt (FRA) concrete. RESULTS : From the GPR test, the measured in situ air void of the asphalt concrete overlay gradually decreased from 12.6% at placement to 8.1% after five roller passes for conventional asphalt concrete, and from 10.7% to 5.9% for the FRA concrete. The thickness of the asphalt concrete overlay was reduced from 7.0 cm to 6.0 cm for the conventional material, and from 9.2 cm to 6.4 cm for the FRA concrete. From the IR camera measurements, the temperature differences in the asphalt mat ranged from $10^{\circ}C$ to $30^{\circ}C$ in the two test sections. CONCLUSIONS : During asphalt concrete construction, GPR and IR tests can be applicable for monitoring the changes in in situ density, thickness, and temperature differences of the overlay, which are the most important factors for quality control. For easier and more reliable quality control of asphalt overlay construction, it is better to use the thickness measurement from the GPR.