• Title/Summary/Keyword: In-situ composites

Search Result 171, Processing Time 0.023 seconds

Tensile Failure Characterization of Composites for Railway Vehicle (철도차량 복합소재의 인장파괴 특성분석)

  • Kim, Jeong-Guk;Kwon, Sung-Tae;Kim, Jung-Seok;Yoon, Hyuk-Jin
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1231-1235
    • /
    • 2010
  • The tensile failure behavior of polymer matrix composite materials was investigated with the aid of a nondestructive evaluation (NDE) technique. The materials, E-glass fiber reinforced epoxy matrix composites, which are applicable to carbody materials in railway vehicles to reduce weight, were used for this investigation. In order to explain stress-strain behavior of polymer matrix composite sample, the infrared thermography technique was employed. A high-speed infrared (IR) camera was used for in-situ monitoring of progressive damages of polymer matrix composite samples during tensile testing. In this investigation, the IR thermography technique was used to facilitate a better understanding of damage evolution, fracture mechanism, and failure mode of polymer matrix composite materials during monotonic loadings.

  • PDF

Morphology and Charge Transport Properties of Chemically Synthesized Polyaniline-poly(ε-caprolactone) Polymer Films

  • Basavaraja, C.;Kim, Dae-Gun;Kim, Won-Jeong;Kim, Ji-Hyun;Huh, Do-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.927-933
    • /
    • 2011
  • Conducting polyaniline-poly($\varepsilon$-caprolactone) polymer composites were synthesized via in situ deposition techniques. By dissolving different weight percentages of poly($\varepsilon$-caprolactone) (PCL) (10%, 20%, 30%, 40%, and 50%), the oxidative polymerization of aniline was achieved using ammonium persulfate as an oxidant. FTIR, UV-vis spectra, and X-ray diffraction studies support a strong interaction between polyaniline (PANI) and PCL. Structural morphology of the PANI-PCL polymer composites was studied using scanned electron microscopy (SEM) and transmittance electron microscopy (TEM), and thermal stability was analyzed by thermogravimetric analysis (TGA) technique. The temperature-dependent DC conductivity of PANI-PCL polymer composite films was studied in the range of 305-475 K, which revealed a semiconducting behavior in the transport properties of the polymer films. Conductivity increased with the increase of PCL in below critical level, however conductivity of the polymer film was decreased with increase of PCL concentration higher than the critical value.

Tailored Powder Composites by Freeze Drying, Electrophoretic Deposition and Sintering

  • Olevsky, Eugene A.;Wang, Xuan
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.287-288
    • /
    • 2006
  • Two approaches for the fabrication of tailored powder composites with specially distributed pore-grain structure and chemical composition are investigated. Electrophoretic Deposition (EPD) followed by microwave sintering is employed to obtain functionally graded materials (FGM) by in-situ controlling the deposition bath suspension composition. $Al_2O_3/ZrO_2$ and zeolite FGM are successfully synthesized using this technique. In order to fabricate an aligned porous structure, unidirectional freezing followed by freeze drying and sintering is employed. By controlling the temperature gradient during freezing of powder slurry, a unidirectional ice-ceramic structure is obtained. The frozen specimen is then subjected to freeze drying to sublimate the ice. The obtained capillary-porous ceramic specimen is consolidated by sintering. The sintering of the graded structure is modeled by the continuum theory of sintering.

  • PDF

Effect of Contact Load on Wear Property of (TiB+TiC) Particulates Reinforced Titanium Matrix Composites ((TiB+TiC) 입자강화 Ti기 복합재료의 접촉하중에 따른 내마모 특성)

  • Choi, Bong-Jae
    • Journal of Korea Foundry Society
    • /
    • v.37 no.4
    • /
    • pp.115-122
    • /
    • 2017
  • The aim of this research is to evaluate the wear properties of (TiB+TiC) paticulate reinforced titanium matrix composites (TMCs) by in-situ synthesis. Different particle sizes (1500, $150{\mu}m$) and contents (0.94, 1.88 and 3.76 mass% for Ti, 1.98 and 3.96 mass% for the Ti6Al4V alloy) of boron carbide were added to pure titanium and to a Ti6Al4V alloy matrix during vacuum induction melting to provide 5, 10 and 20 vol.% (TiB+TiC) particulate reinforcement amounts. The wear behavior of the (TiB+TiC) particulate reinforced TMCs is described in detail with regard to the coefficient of friction, the hardness, and the degree of reinforcement fragmentation during sliding wear. The worn surfaces of each sliding wear condition are shown for the three types of wear studied here: transfer layer wear, particle cohesion wear and the development of abrasive areas. The fine reinforcements of TMCs were easily fragmented from the Ti matrix as compared to coarse reinforcements, and fragmented debris accelerated the decrease in the wear resistance.

Biaxial Tensile Behaviors of Elastomeric Polymer Networks

  • Shinzo, Kohjiya
    • Elastomers and Composites
    • /
    • v.38 no.2
    • /
    • pp.175-179
    • /
    • 2003
  • For the total description of mechanical behaviors of elastomers, it is necessary to know the so-called rheological constitutive equation i.e. the strain-energy density function (W) in case of elastomers, which necessitates biaxial tensile results of elastic body. This paper first describes the experimental results of biaxial tensile measurements on poly(siloxane) model networks. W was estimated from its differential form i.e. the $1^{st}$ differential of W is stress. The W was found to reproduce the experimental stress-strain results, and the W estimated for silica filled poly(siloxane) networks suggest a different behavior between conventional precipitated silica and in situ formed silica. The difference suggests the different surface property of the two silicas.

Thermal Anisotropy of Hollow Carbon Fiber-Carbon Composite Materials

  • Yang, Chun-Hoi;Shim, Hwan-Boh
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.91-95
    • /
    • 2005
  • Carbon composites were prepared with pitch-based round, C, hollow-type carbon fibers and pitch matrix. The thermal conductivities parallel and perpendicular to the fiber axis were measured by steady-state method. It was found that the thermal conductivities depended on the cross-sectional forms of the reinforcing fibers as well as the reinforcing orientation and carbon fiber precusors. Especially, mesophase pitch-based hollow carbon fiber-carbon composites had the most excellent thermal anisotropy, which was above 100.

Design of Turbulent In-situ Mixing Mixer and Fabrication of Cu-TiB2 Nanocomposities (난류 용탕 In-situ 합성 믹서의 설계 및 Cu-TiB2 나노 복합재료의 제조)

  • Choi, Baek-Boo;Park, Jung-Su;Yun, Ji-Hun;Ha, Man-Young;Park, Yong-Ho;Park, Ik-Min
    • Korean Journal of Materials Research
    • /
    • v.17 no.1
    • /
    • pp.11-17
    • /
    • 2007
  • Turbulent in-situ mixing process is a new material process technology to get dispersed phase in nanometer size by controlling reaction of liquid/solid, liquid/gas, flow ana solidification speed simultaneously. In this study, mixing which is the key technology to this synthesis method was studied by computational fluid dynamics. For the simulation of mixing of liquid metal, static mixers investigated. Two inlets for different liquid metal meet ana merge like 'Y' shape tube having various shapes and radios of curve. The performance of mixer was evaluated with quantitative analysis with coefficient of variance of mass fraction. Also, detailed plots of intersection were presented to understand effect of mixer shape on mixing. The simulations show that the Reynolds number (Re) is the important factor to mixing and dispersion of $TiB_2$ particles. Mixer was designed according to the simulation, and $Cu-TiB_2$ nano composites were evaluated. $TiB_2$ nano particles were uniformly dispersed when Re was 1000, and cluster formation and reduction in volume fraction of $TiB_2$ were found at higher Re.

Preparation and Electrochemical Properties of PANI/TiO2 Composites for Supercapacitor Electrodes (수퍼커패시터 전극을 위한 폴리아닐린/TiO2 복합체의 제조 및 전기화학적 성질)

  • Park, Sukeun;Kim, Kwang Man;Lee, Young-Gi;Jung, Yongju;Kim, Seok
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.50-54
    • /
    • 2012
  • In this study, PANI and PANI/$TiO_2$ composites were prepared as electrode materials for a supercapacitor application. Cyclic voltammetry (CV) was performed to investigate the supercapacity properties of these electrodes in an electrolyte solution of 6 M KOH. The PANI/$TiO_2$ composites were polymerized by amount of various ratios through a simple in-situ method. The morphological properties of composites were analyzed by SEM and TEM method. The crystallinity of the composite and $TiO_2$ particle size were identified using X-ray diffraction (XRD). In the electrochemical test, The electrode containing 10 wt% $TiO_2$ content against aniline units showed the highest specific capacitance (626 $Fg^{-1}$) and delivered a capacitance of 286 $Fg^{-1}$ reversibly at a 100 $mVs^{-1}$ rate. According to the surface morphology, the increased capacitance was related to the fact that nano-sized $TiO_2$ particles (~6.5 nm) were uniformly connected for easy charge transfer and an enhanced surface area for capacitance reaction of $TiO_2$ itself.

On the Properties of TLCP/PBT Blends Prepared by In Situ Polymerization in PBT Solution (In situ 중합에 의해서 제조된 TLCP/PBT 블렌드의 특성 연구)

  • Choi, Jae-Kon;Park, Il-Soo;Kim, Sun;Choi, Yoo-Sung;Lee, Eung-Jae;Jo, Byung-Wook
    • Elastomers and Composites
    • /
    • v.39 no.3
    • /
    • pp.217-227
    • /
    • 2004
  • A new thermotropic liquid crystalline polymer(TLCP) containing a triad aromatic ester type mesogenic unit and butylene terephthalate unit(BT) in the main chain was synthesized by polycondensation reaction. The TLCP synthesized showed nematic mesophasic behavior and its transition temperature from solid to mesophase was $260^{\circ}C$. The TLCP/PBT blends were prepared by in-situ polymerization in PBT solution and characterized by differential scanning calorimeter(DSC), thermogavimetric analyzer(TGA), scanning electron microscope(SEM), x-ray diffractometer(XRD), and dynamic mechanical thermal analyze, (DMTA). The blends showed well dispersed TLCP phases with domain sizes $0.05{\sim}0.2{\mu}m$ in the PBT matrix. As the increasing TLCP content from 5 to 20 wt%, ${\Delta}Hm$ values of pure PBT in the blend were increased because TLCP acts as a nucleating agent in the PBT matrix. The mechanical properties of the blends depended on the TLCP contents because the TLCP acted effectively as a reinforcing material in the PBT matrix. The blends showed good interfacial adhesion between the TLCP phase and PBT matrix.The blends prepared by in-situ polymerization showed higher mechanical properties and well dispersed TLCP domains than those of the blends prepared by melt blending.

Optical sensitivity of DNA-dispersed single-walled carbon nanotubes within cement composites under mechanical load

  • Kim, Jin Hee;Rhee, Inkyu;Jung, Yong Chae;Ha, Sumin;Kim, Yoong Ahm
    • Carbon letters
    • /
    • v.24
    • /
    • pp.90-96
    • /
    • 2017
  • We demonstrated the sensitivity of optically active single-walled carbon nanotubes (SWCNTs) with a diameter below 1 nm that were homogeneously dispersed in cement composites under a mechanical load. Deoxyribonucleic acid (DNA) was selected as the dispersing agent to achieve a homogeneous dispersion of SWCNTs in an aqueous solution, and the dispersion state of the SWCNTs were characterized using various optical tools. It was found that the addition of a large amount of DNA prohibited the structural evolution of calcium hydroxide and calcium silicate hydrate. Based on the in-situ Raman and X-ray diffraction studies, it was evident that hydrophilic functional groups within the DNA strongly retarded the hydration reaction. The optimum amount of DNA with respect to the cement was found to be 0.05 wt%. The strong Raman signals coming from the SWCNTs entrapped in the cement composites enabled us to understand their dispersion state within the cement as well as their interfacial interaction. The G and G' bands of the SWCNTs sensitively varied under mechanical compression. Our results indicate that an extremely small amount of SWCNTs can be used as an optical strain sensor if they are homogeneously dispersed within cement composites.