• Title/Summary/Keyword: In-situ Test

Search Result 1,147, Processing Time 0.023 seconds

Verifying ASCE 41 the evaluation model via field tests of masonry infilled RC frames with openings

  • Huang, Chun-Ting;Chiou, Tsung-Chih;Chung, Lap-Loi;Hwang, Shyh-Jiann;Jaung, Wen-Ching
    • Earthquakes and Structures
    • /
    • v.19 no.3
    • /
    • pp.157-174
    • /
    • 2020
  • The in-situ pushover test differs from the shake-table test because it is performed outdoors and thus its size is not restricted by space, which allows us to test a full-size building. However, to build a new full-size building for the test is not economical, consequently scholars around the world usually make scale structures or full-scale component units to be tested in the laboratory. However, if in-situ pushover tests can be performed on full-size structures, then the seismic behaviors of buildings during earthquakes can be grasped. In view of this, this study conducts two in-situ pushover tests of reinforced concrete (RC) buildings. One is a masonry-infilled RC building with openings (the openings ratio of masonry infill wall is between 24% and 51%) and the other is an RC building without masonry infill. These two in-situ pushover tests adopt obsolescent RC buildings, which will be demolished, to conduct experiment and successfully obtain seismic capacity curves of the buildings. The test results are available for the development or verification of a seismic evaluation model. This paper uses ASCE 41-17 as the main evaluation model and is accompanied by a simplified pushover analysis, which can predict the seismic capacity curves of low-rise buildings in Taiwan. The predicted maximum base shear values for masonry-infilled RC buildings with openings and for RC buildings without masonry infill are, respectively, 69.69% and 87.33% of the test values. The predicted initial stiffness values are 41.04% and 100.49% of the test values, respectively. It can be seen that the ASCE 41-17 evaluation model is reasonable for the RC building without masonry infill walls. In contrast, the analysis result for the masonry infilled RC building with openings is more conservative than the test value because the ASCE 41-17 evaluation model is limited to masonry infill walls with an openings ratio not exceeding 40%. This study suggests using ASCE 41-17's unreinforced masonry wall evaluation model to simulate a masonry infill wall with an openings ratio greater than 40%. After correction, the predicted maximum base shear values of the masonry infilled RC building with openings is 82.60% of the test values and the predicted initial stiffness value is 67.13% of the test value. Therefore, the proposed method in this study can predict the seismic behavior of a masonry infilled RC frame with large openings.

Numerical analysis of Self-Boring Pressuremeter test results using FEM - Consolidation characteristics of clay (유한요소해석을 이용한 SBP 시험의 결과해석 - 점성토 지반의 압밀특성)

  • 장인성;정충기
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.67-74
    • /
    • 1999
  • Self-Boring Pressuremeter Test(SBPT) is known to be the most effective in-situ test method which can reliably determine consolidation characteristics as well as deformation modules and untrained shear strength. In order to derive the coefficient of consolidation using SBPT results it is necessary to obtain the dissipation behavior from the pore pressure change with time during constant radial strain(generally 10%) and to derive the reliable time factor(Τ) from the analytical method which considers the real in-situ conditions. As previous studies on time factor are based on the assumptions of plane strain condition that the membrane of SBP is infinite, of untrained condition during the expansion of the probe and of elastic soil behavior during consolidation, these analyses can't consider the real boundary conditions and the real soil behaviour. In this study, consolidation analysis similar to real in-situ conditions including test procedure is conducted using finite element program which employs MCC model and Biot theory. Time factor considering the effects of finite membrane length, the total pressure change during consolidation and partial drainage is proposed and compared with previous results.

  • PDF

CJM Grouting to Reduce the Permeability in Alluvium (충적층 차수벽으로서 CJM Grouting)

  • Chun, Byung-Sik;Yang, Hyung-Chil
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.253-263
    • /
    • 2005
  • There were no cases to use CJM Grouting to Reduce the Permeability of open-cut in Alluvium adjacent to Han River. In this paper, the applicability of CJM Grouting to Reduce the Permeability in Alluvium is reasonably estimated by in-situ Permeability test and coring. It is known that the range of improvement is decided by injection pressure, time of high pressure water and by slump, injection pressure of injection materials.

  • PDF

Micro In-situ Tests on Overconsolidated Clay Prepared in Chambers (토조내에 준비된 과압밀 점토에 대한 모형 원위치 시험)

  • Cho Nam Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.5-16
    • /
    • 2005
  • Tn this study, model soil deposits are prepared in large test chambers to minimize the scale effects. Also, slurry of mixture containing 50 percent kaolin clay and 50 percent silica has been consolidated to simulate the process of natural soil deposit formation and to reduce the consolidation time. To provide a more detailed description of varying soil properties along the soil profile of model clay deposits and to compare the in-situ test results with those from prototype tests, miniature in-situ tests, including vane shear, piezoprobe, and cone penetration tests were conducted in each of the clay deposits. The current results indicate that consistent soil deposits were prepared for the current and previous test programs. Also, reasonable predicting methods of prototype behavior based on model in-situ test results were suggested in this study by examining differences between the test results from both the model and prototype tests.

A Study on Mechanical Properties and Fracture Behaviors of In-situ Liquid Mixing Processed FeAl/TiC Intermetallic Matrix Composite (In-situ Liquid Mixing 방법으로 제조된 FeAl/TiC 금속간화합물 복합재료의 기계적 특성과 파괴양상에 관한 연구)

  • Chung, Euihoon;Park, Ikmin;Park, Yongho
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.7
    • /
    • pp.683-689
    • /
    • 2010
  • In this study, FeAl based intermetallic matrix composites reinforced with in-situ synthesized TiC particles were fabricated by an in-situ liquid mixing process. The microstructures, mechanical properties and fracture behaviors of the in-situ liquid mixing processed composite were investigated and compared with the vacuum suction casting processed composite. The results showed that the in-situ formed TiC particles exhibited fine and uniform dispersion in the liquid mixing processed composite, while significant grain boundary clustering and coarsening of TiC particles were obtained by the vacuum suction process. It was also shown in both types of composites that the hardness and bending strength were increased with the increase of the TiC volume fractions. Through the study of fractography in the bending test, it was considered that the TiC particles prohibited brittle intergranular fracture of FeAl intermetallic matrix by crack deflections. Because of the uniformly distributed fine TiC particles, the bending strength of the liquid mixing processed composite was superior to that of the casting processed composite.

Engineering characterization of intermediate geomaterials - A review

  • T. Ashok Kumar;Ramanandan Saseendran;V. Sundaravel
    • Geomechanics and Engineering
    • /
    • v.33 no.5
    • /
    • pp.453-462
    • /
    • 2023
  • Intermediate Geomaterials (IGMs) are natural formation materials that exhibit the engineering behavior (strength and compressibility) between soils and rocks. The engineering behavior of such material is highly unpredictable as the IGMs are stiffer than soils and weaker/softer than rocks. Further, the characterization of such material needs exposure to both soil and rock mechanics. In most conventional designs of geotechnical structures, the engineering properties of the IGMs are either aligned with soils or rocks, and this assumption may end up either in an over-conservative design or under-conservative design. Hence, many researchers have attempted to evaluate its actual engineering properties through laboratory tests. However, the test results are partially reliable due to the poor core recovery of IGMs and the possible sample disturbance. Subsequently, in-situ tests have been used in recent years to evaluate the engineering properties of IGMs. However, the respective in-situ test finds its limitations while exploring IGMs with different geological formations at deeper depths with the constraints of sampling. Standard Penetration Test (SPT) is the strength-based index test that is often used to explore IGMs. Moreover, it was also observed that the coefficient of variation of the design parameters (which represents the uncertainties in the design parameters) of IGMs is relatively high, and also the studies on the probabilistic characterization of IGMs are limited compared with soils and rocks. With this perspective, the present article reviews the laboratory and in-situ tests used to characterize the IGMs and explores the shear strength variation based on their geological origin.

A Case Study of Predicting Groundwater Inflow Into Hardrock Tunnels Based Upon In-Situ Packer Test Data (현장수압시험결과의 통계처리를 이용한 암반터널의 용수량예측기법 사례연구)

  • 박준경;박영진;최영태;이대혁
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.671-680
    • /
    • 2003
  • The accuracy of inflow into tunnel estimates depends largely on how well permeability is characterized. But, the average of the packer test results will always underestimate the upper end of the permeability range, and therefore underestimate the inflow. Taking an average of the test results always underestimates inflow because the average permeability does not really exist. The distribution of packer-test data may not accurately reflect permeability, however, due to the limits of the test method and the luck of the field investigation. These discrepancies may be overcome by using Raymer(2001)'s log-normal plots and Heuer(1995)'s histograms of the data to develop a permeability model that will be used in lieu of the data to calculate inflow. Furthermore, the influence on the inflow is examined by the geological characteristics based upon the hundred times of packer test OO tunnel project.

  • PDF

The Effects of Sample Disturbance on Undrained Properties of Yangsan Clay (양산점토의 비배수 특성에 대한 시료교란의 효과)

  • 김길수;임형덕;이우진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.639-646
    • /
    • 2000
  • It is important to estimate the mechanical properties of clay since it is directly related to the design and the construction of geotechnical structures. Site exploration, which is composed of boring, sampling, in-situ, or laboratory tests, is preformed to estimate the mechanical properties. However, mechanical properties of clay measured from laboratory test may be different from in-situ properties due to disturbances occurred during sampling, transportation, storage, and trimming. In this study, the degree of disturbance according to sampling method was estimated with the test results of CK/sub o/U triaxial compression test on Yangsan clay. The soil samples were obtained by three types of sampling method, j.e., 76mm-tube sampler, 76mm-piston sampler, and block sampler. In order to evaluate the quality of samples, volumetric strain, undrained shear strength, secant Young's modulus, and pore pressure coefficient at peak measured from each sample were compared with one another. From the test results, it was observed that mechanical properties of the block and piston samples were more reliable than those of tube samples. But it was observed that the water content of piston was similar to that of tube samples at given depths while the water content of block samples was 14.3∼15.8% smaller than that of piston and tube samples. In addition to the evaluation of the quality of samples, relationship between c/sub u// σ/sub vc/'and OCR was established from the results of the CK/sub o/U triaxial compression tests, which were carried out using SHANSEP method. And also undrained shear strength was analyzed using the in-situ test data such as Cone Penetration Test(CPT), Dilatometer Test(DMT), and Field Vane Test(FVT) and was compared with that evaluated from CK/sub o/U triaxial compression test.

  • PDF

A Study on the Determination of In-Situ Concrete Strength by Combined Nondestructive Testing Method (조합법에 의한 현장 콘크리트 강도의 비파괴 측정에 관한 연구)

  • 임선택;김창환;김영진;정한중
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.114-119
    • /
    • 1992
  • The main disadvantages of destructive testing methods are the delay in obtaining test results, the relatively high cost of testing, and the lack of reproducibility in the test results. As a result, nondestructive testing methods are generally used. There are three objectives in this paper. The first is to determine the equations of the compressive strength of concrete estimated by Schmidt hammer technique, ultrasonic pulse velocity method and combined method respectively in laboratory. The second is to determine the correction factors according to the concrete age which affects most in evaluating the compressive strength of in-situ concrete. The third is to examine the applicability of the equations to evaluation of the compressive strength of in-situ concrete structures.

  • PDF

Evaluation of Filter Capacity for Sea Dyke Slope Filter Layer by In-situ Rainfall Test (현장 강우재현시험을 통한 방조제 사면필터층의 필터성능분석)

  • Oh, Young-In;Kim, Seo-Ryong;Yoo, Jeon-Yong;Kim, Hyun-Tae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.828-837
    • /
    • 2006
  • Geotextiles consist of three major types of geosynthetic material (woven, non-woven and composite) and the functions of geotextiles are separation, reinforcement, filtration, drainage and as a moisture barrier. Although the many research scholar and engineer developed and established the design criteria and construction methodology, sustainable research still needed for optimum design methodology to the complicate field conditions. In this study, in-situ rainfall test performed to develop suitable filter system for sea dyke upper slope filter layer. In-situ rainfall test conducted for seven different filter system and measured the infiltration flux and pore pressure at various filter layer. Based on the test results, the double layered geotextile filter and sand transition system is most suitable for sea dyke upper filter layer because which system is effective for drainage of infiltration flow and minimize the deformation of sea dyke cover stone.

  • PDF