• 제목/요약/키워드: In-silico

검색결과 403건 처리시간 0.032초

In Silico Study of miRNA Based Gene Regulation, Involved in Solid Cancer, by the Assistance of Argonaute Protein

  • Rath, Surya Narayan;Das, Debasrita;Konkimalla, V Badireenath;Pradhan, Sukanta Kumar
    • Genomics & Informatics
    • /
    • 제14권3호
    • /
    • pp.112-124
    • /
    • 2016
  • Solid tumor is generally observed in tissues of epithelial or endothelial cells of lung, breast, prostate, pancreases, colorectal, stomach, and bladder, where several genes transcription is regulated by the microRNAs (miRNAs). Argonaute (AGO) protein is a family of protein which assists in miRNAs to bind with mRNAs of the target genes. Hence, study of the binding mechanism between AGO protein and miRNAs, and also with miRNAs-mRNAs duplex is crucial for understanding the RNA silencing mechanism. In the current work, 64 genes and 23 miRNAs have been selected from literatures, whose deregulation is well established in seven types of solid cancer like lung, breast, prostate, pancreases, colorectal, stomach, and bladder cancer. In silico study reveals, miRNAs namely, miR-106a, miR-21, and miR-29b-2 have a strong binding affinity towards PTEN, TGFBR2, and VEGFA genes, respectively, suggested as important factors in RNA silencing mechanism. Furthermore, interaction between AGO protein (PDB ID-3F73, chain A) with selected miRNAs and with miRNAs-mRNAs duplex were studied computationally to understand their binding at molecular level. The residual interaction and hydrogen bonding are inspected in Discovery Studio 3.5 suites. The current investigation throws light on understanding miRNAs based gene silencing mechanism in solid cancer.

High Affinity Pharmacological Profiling of Dual Inhibitors Targeting RET and VEGFR2 in Inhibition of Kinase and Angiogeneis Events in Medullary Thyroid Carcinoma

  • Dunna, Nageswara Rao;Kandula, Venkatesh;Girdhar, Amandeep;Pudutha, Amareshwari;Hussain, Tajamul;Bandaru, Srinivas;Nayarisseri, Anuraj
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권16호
    • /
    • pp.7089-7095
    • /
    • 2015
  • Clinical evidence shows that dual inhibition of kinases as well angiogenesis provides ideal therapeutic option in the treatment of medullary thyroid carcinoma (MTC) than inhibiting either of these with the events separately. Although treatment with dual inhibitors has shown good clinical responses in patients with MTC, it has been associated with serious side effects. Some inhibitors are active agents for both angiogenesis or kinase activity. Owing to narrow therapeutic window of established inhibitors, the present study aims to identify high affinity dual inhibitors targeting RET and VEGFR2 respectively for kinase and angiogenesis activity. Established inhibitors like Vandetanib, Cabozantinib, Motesanib, PP121, RAF265 and Sunitinib served as query parent compounds for identification of structurally similar compounds by Tanimoto-based similarity searching with a threshold of 95% against the PubChem database. All the parent inhibitors and respective similar compounds were docked against RET and VEGFR2 in order to retrieve high affinity compounds with these two proteins. AGN-PC-0CUK9P PubCID: 59320403 a compound related to PPI21 showed almost equal affinity for RET and VEGFR2 and unlike other screened compounds with no apparent bias for either of the receptors. Further, AGNPC- 0CUK9P demonstrated appreciable interaction with both RET and VEGFR2 and superior kinase activity in addition to showed optimal ADMET properties and pharmacophore features. From our in silico investigation we suggest AGN-PC-0CUK9P as a superior dual inhibitor targeting RET and VEGFR2 with high efficacy which should be proposed for pharmacodynamic and pharmacokinetic studies for improved treatment of MTC.

An In Silico Drug Repositioning Strategy to Identify Specific STAT-3 Inhibitors for Breast Cancer

  • Sruthy Sathish
    • 통합자연과학논문집
    • /
    • 제16권4호
    • /
    • pp.123-131
    • /
    • 2023
  • Breast cancer continues to pose a substantial worldwide health challenge, thereby requiring the development of innovative strategies to discover new therapeutic interventions. Signal Transducer and Activator of Transcription 3 (STAT-3) has been identified as a significant factor in the development of several types of cancer, including breast cancer. This is primarily attributed to its diverse functions in promoting tumour formation and conferring resistance to therapeutic interventions. This study presents an in silico drug repositioning approach that focuses on identifying specific inhibitors of STAT-3 for the purpose of treating breast cancer. We initially examined the structural and functional attributes of STAT-3, thereby elucidating its crucial involvement in cellular signalling cascades. A comprehensive virtual screening was performed on a diverse collection of drugs that have been approved by the FDA from zinc15 database. Various computational techniques, including molecular docking, cross docking, and cDFT analysis, were utilised in order to prioritise potential candidates. This prioritisation was based on their predicted binding energies and outer molecular orbital reactivity. The findings of our study have unveiled a Dihydroergotamine and Paritaprevir that have been approved by the FDA and exhibit considerable promise as selective inhibitors of STAT-3. In conclusion, the utilisation of our in silico drug repositioning approach presents a prompt and economically efficient method for the identification of potential compounds that warrant subsequent experimental validation as selective STAT-3 inhibitors in the context of breast cancer. The present study highlights the considerable potential of employing computational strategies to expedite the drug discovery process. Moreover, it provides valuable insights into novel avenues for targeted therapeutic interventions in the context of breast cancer treatment.

Combining In Silico Mapping and Arraying: an Approach to Identifying Common Candidate Genes for Submergence Tolerance and Resistance to Bacterial Leaf Blight in Rice

  • Kottapalli, Kameswara Rao;Satoh, Kouji;Rakwal, Randeep;Shibato, Junko;Doi, Koji;Nagata, Toshifumi;Kikuchi, Shoshi
    • Molecules and Cells
    • /
    • 제24권3호
    • /
    • pp.394-408
    • /
    • 2007
  • Several genes/QTLs governing resistance/tolerance to abiotic and biotic stresses have been reported and mapped in rice. A QTL for submergence tolerance was found to be co-located with a major QTL for broad-spectrum bacterial leaf blight (bs-blb) resistance on the long arm of chromosome 5 in indica cultivars FR13A and IET8585. Using the Nipponbare (japonica) and 93-11 (indica) genome sequences, we identified, in silico, candidate genes in the chromosomal region [Kottapalli et al. (2006)]. Transcriptional profiling of FR13A and IET8585 using a rice 22K oligo array validated the above findings. Based on in silico analysis and arraying we observed that both cultivars respond to the above stresses through a common signaling system involving protein kinases, adenosine mono phosphate kinase, leucine rich repeat, PDZ/DHR/GLGF, and response regulator receiver protein. The combined approaches suggest that transcription factor EREBP on long arm of chromosome 5 regulates both submergence tolerance and blb resistance. Pyruvate decarboxylase and alcohol dehydrogenase, co-located in the same region, are candidate downstream genes for submergence tolerance at the seedling stage, and t-snare for bs-blb resistance. We also detected up-regulation of novel defense/stress-related genes including those encoding fumaryl aceto acetate (FAA) hydrolase, scramblase, and galactose oxidase, in response to the imposed stresses.

Molecular Mechanism Underlying Hesperetin-induced Apoptosis by in silico Analysis and in Prostate Cancer PC-3 Cells

  • Sambantham, Shanmugam;Radha, Mahendran;Paramasivam, Arumugam;Anandan, Balakrishnan;Malathi, Ragunathan;Chandra, Samuel Rajkumar;Jayaraman, Gopalswamy
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권7호
    • /
    • pp.4347-4352
    • /
    • 2013
  • Aim: To investigate the molecular mechanisms underlying triggering of apoptosis by hesperetin using in silico and in vitro methods. Methods: The mechanism of binding of hesperetin with NF-${\kappa}B$ and other apoptotic proteins like BAX, BAD, $BCL_2$ and $BCL_{XL}$ was analysed in silico using Schrodinger suite 2009. In vitro studies were also carried out to evaluate the potency of hesperetin in inducing apoptosis using the human prostate cancer PC-3 cell line. Results: Hesperetin was found to exhibit high-affinity binding resulting from greater intermolecular forces between the ligand and its receptor NF-${\kappa}B$ (-7.48 Glide score). In vitro analysis using MTT assay confirmed that hesperetin reduced cell proliferation ($IC_{50}$ values of 90 and $40{\mu}M$ at 24 and 48h respectively) in PC-3 cells. Hesperetin also downregulated expression of the anti-apoptotic gene $BCL_{XL}$ at both mRNA and protein levels and increased the expression of pro-apoptotic genes like BAD at mRNA level and BAX at mRNA as well as protein levels. Conclusion: The results suggest that hesperetin can induce apoptosis by inhibiting NF-${\kappa}B$.

Characterization of Gel16 as a Cytochrome P450 in Geldanamycin Biosynthesis and in-silico Analysis for an Endogenous Electron Transport System

  • Rimal, Hemraj;Yu, Sang-Cheol;Lee, Byeongsan;Hong, Young-Soo;Oh, Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권1호
    • /
    • pp.44-54
    • /
    • 2019
  • Geldanamycin and its derivatives, inhibitors of heat shock protein 90, are considered potent anticancer drugs, although their biosynthetic pathways have not yet been fully elucidated. The key step of conversion of 4,5-dihydrogeldanamycin to geldanamycin was expected to catalyze by a P450 monooxygenase, Gel16. The adequate bioconversions by cytochrome P450 mostly rely upon its interaction with redox partners. Several ferredoxin and ferredoxin reductases are available in the genome of certain organisms, but only a few suitable partners can operate in full efficiency. In this study, we have expressed cytochrome P450 gel16 in Escherichia coli and performed an in vitro assay using 4,5-dihydrogeldanamycin as a substrate. We demonstrated that the in silico method can be applicable for the efficient mining of convenient endogenous redox partners (9 ferredoxins and 6 ferredoxin reductases) against CYP Gel16 from Streptomyces hygroscopicus. The distances for ligand FDX4-FDR6 were found to be $9.384{\AA}$. Similarly, the binding energy between Gel16-FDX4 and FDX4-FDR6 were -611.88 kcal/mol and -834.48 kcal/mol, respectively, suggesting the lowest distance and binding energy rather than other redox partners. These findings suggest that the best redox partners of Gel16 could be NADPH ${\rightarrow}$ FDR6 ${\rightarrow}$ FDX4 ${\rightarrow}$ Gel16.

당뇨 연구를 위한 웹기반 통합 데이터베이스 시스템 구현 (Web-Based Integrated Database system Implementation for Diabetes Research)

  • 김재희;류근호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2007년도 춘계학술발표대회
    • /
    • pp.71-74
    • /
    • 2007
  • 오늘날 생물학 데이터베이스 시스템은 끊임없이 증가하고 복잡하게 연결되는 데이터를 처리해야 할 필요성과 데이터양의 증가만큼이나 빨리 성장하는 사용자들의 요구에 부응해야 하는 필요성에 직면해 있다. 이 논문에서는 기존의 생물학 데이터베이스 시스템의 특징을 살펴본 후, 현재 당뇨 관련 데이터베이스가 존재하지 않으므로 당뇨 연구를 위한 포괄적인 정보 제공과 사용의 편의를 제공하기 위하여 생물학 관련 데이터베이스를 교차 참조한 당뇨 연구용 데이터베이스를 설계하였다. 본 논문에서 설계한 데이터베이스는 Genetic Information, Protein Information, In Silico digestion, 그리고 Chemical Information 4개의 메뉴로 구성하였다. Genetic Information과 Protein Information은 Cross-Reference를 통한 관련 데이터베이스와 연결시켰고, Protein Information에서 PDB 코드가 존재할 경우 3차원 분자 구조를 제공한다. 아울러 단백질 동정시에 활용할 수 있는 선택된 효소처리 후의 펩타이드의 이론적 질량값을 계산하도록 구현(In Silico Digestion)하였으며, 당뇨 관련 주요 단백질의 화합물들의 구조를 제공하였다.

Development of a Novel Subunit Vaccine Targeting Fusobacterium nucleatum FomA Porin Based on In Silico Analysis

  • Jeong, Kwangjoon;Sao, Puth;Park, Mi-Jin;Lee, Hansol;Kim, Shi Ho;Rhee, Joon Haeng;Lee, Shee Eun
    • International Journal of Oral Biology
    • /
    • 제42권2호
    • /
    • pp.63-70
    • /
    • 2017
  • Selecting an appropriate antigen with optimal immunogenicity and physicochemical properties is a pivotal factor to develop a protein based subunit vaccine. Despite rapid progress in modern molecular cloning and recombinant protein technology, there remains a huge challenge for purifying and using protein antigens rich in hydrophobic domains, such as membrane associated proteins. To overcome current limitations using hydrophobic proteins as vaccine antigens, we adopted in silico analyses which included bioinformatic prediction and sequence-based protein 3D structure modeling, to develop a novel periodontitis subunit vaccine against the outer membrane protein FomA of Fusobacterium nucleatum. To generate an optimal antigen candidate, we predicted hydrophilicity and B cell epitope parameter by querying to web-based databases, and designed a truncated FomA (tFomA) candidate with better solubility and preserved B cell epitopes. The truncated recombinant protein was engineered to expose epitopes on the surface through simulating amino acid sequence-based 3D folding in aqueous environment. The recombinant tFomA was further expressed and purified, and its immunological properties were evaluated. In the mice intranasal vaccination study, tFomA significantly induced antigen-specific IgG and sIgA responses in both systemic and oral-mucosal compartments, respectively. Our results testify that intelligent in silico designing of antigens provide amenable vaccine epitopes from hard-to-manufacture hydrophobic domain rich microbial antigens.

StrokeBase: A Database of Cerebrovascular Disease-related Candidate Genes

  • Kim, Young-Uk;Kim, Il-Hyun;Bang, Ok-Sun;Kim, Young-Joo
    • Genomics & Informatics
    • /
    • 제6권3호
    • /
    • pp.153-156
    • /
    • 2008
  • Complex diseases such as stroke and cancer have two or more genetic loci and are affected by environmental factors that contribute to the diseases. Due to the complex characteristics of these diseases, identifying candidate genes requires a system-level analysis of the following: gene ontology, pathway, and interactions. A database and user interface, termed StrokeBase, was developed; StrokeBase provides queries that search for pathways, candidate genes, candidate SNPs, and gene networks. The database was developed by using in silico data mining of HGNC, ENSEMBL, STRING, RefSeq, UCSC, GO, HPRD, KEGG, GAD, and OMIM. Forty candidate genes that are associated with cerebrovascular disease were selected by human experts and public databases. The networked cerebrovascular disease gene maps also were developed; these maps describe genegene interactions and biological pathways. We identified 1127 genes, related indirectly to cerebrovascular disease but directly to the etiology of cerebrovascular disease. We found that a protein-protein interaction (PPI) network that was associated with cerebrovascular disease follows the power-law degree distribution that is evident in other biological networks. Not only was in silico data mining utilized, but also 250K Affymetrix SNP chips were utilized in the 320 control/disease association study to generate associated markers that were pertinent to the cerebrovascular disease as a genome-wide search. The associated genes and the genes that were retrieved from the in silico data mining system were compared and analyzed. We developed a well-curated cerebrovascular disease-associated gene network and provided bioinformatic resources to cerebrovascular disease researchers. This cerebrovascular disease network can be used as a frame of systematic genomic research, applicable to other complex diseases. Therefore, the ongoing database efficiently supports medical and genetic research in order to overcome cerebrovascular disease.