• 제목/요약/키워드: In-process

검색결과 115,692건 처리시간 0.095초

Discrimination of Out-of-Control Condition Using AIC in (x, s) Control Chart

  • Takemoto, Yasuhiko;Arizono, Ikuo;Satoh, Takanori
    • Industrial Engineering and Management Systems
    • /
    • 제12권2호
    • /
    • pp.112-117
    • /
    • 2013
  • The $\overline{x}$ control chart for the process mean and either the R or s control chart for the process dispersion have been used together to monitor the manufacturing processes. However, it has been pointed out that this procedure is flawed by a fault that makes it difficult to capture the behavior of process condition visually by considering the relationship between the shift in the process mean and the change in the process dispersion because the respective characteristics are monitored by an individual control chart in parallel. Then, the ($\overline{x}$, s) control chart has been proposed to enable the process managers to monitor the changes in the process mean, process dispersion, or both. On the one hand, identifying which process parameters are responsible for out-of-control condition of process is one of the important issues in the process management. It is especially important in the ($\overline{x}$, s) control chart where some parameters are monitored at a single plane. The previous literature has proposed the multiple decision method based on the statistical hypothesis tests to identify the parameters responsible for out-of-control condition. In this paper, we propose how to identify parameters responsible for out-of-control condition using the information criterion. Then, the effectiveness of proposed method is shown through some numerical experiments.

In-situ Process Monitoring Data from 30-Paired Oxide-Nitride Dielectric Stack Deposition for 3D-NAND Memory Fabrication

  • Min Ho Kim;Hyun Ken Park;Sang Jeen Hong
    • 반도체디스플레이기술학회지
    • /
    • 제22권4호
    • /
    • pp.53-58
    • /
    • 2023
  • The storage capacity of 3D-NAND flash memory has been enhanced by the multi-layer dielectrics. The deposition process has become more challenging due to the tight process margin and the demand for accurate process control. To reduce product costs and ensure successful processes, process diagnosis techniques incorporating artificial intelligence (AI) have been adopted in semiconductor manufacturing. Recently there is a growing interest in process diagnosis, and numerous studies have been conducted in this field. For higher model accuracy, various process and sensor data are required, such as optical emission spectroscopy (OES), quadrupole mass spectrometer (QMS), and equipment control state. Among them, OES is usually used for plasma diagnostic. However, OES data can be distorted by viewport contamination, leading to misunderstandings in plasma diagnosis. This issue is particularly emphasized in multi-dielectric deposition processes, such as oxide and nitride (ON) stack. Thus, it is crucial to understand the potential misunderstandings related to OES data distortion due to viewport contamination. This paper explores the potential for misunderstanding OES data due to data distortion in the ON stack process. It suggests the possibility of excessively evaluating process drift through comparisons with a QMS. This understanding can be utilized to develop diagnostic models and identify the effects of viewport contamination in ON stack processes.

  • PDF

스마트 팩토리의 제조 프로세스 마이닝에 관한 실증 연구 (An Empirical Study on Manufacturing Process Mining of Smart Factory)

  • 김태성
    • 대한안전경영과학회지
    • /
    • 제24권4호
    • /
    • pp.149-156
    • /
    • 2022
  • Manufacturing process mining performs various data analyzes of performance on event logs that record production. That is, it analyzes the event log data accumulated in the information system and extracts useful information necessary for business execution. Process data analysis by process mining analyzes actual data extracted from manufacturing execution systems (MES) to enable accurate manufacturing process analysis. In order to continuously manage and improve manufacturing and manufacturing processes, there is a need to structure, monitor and analyze the processes, but there is a lack of suitable technology to use. The purpose of this research is to propose a manufacturing process analysis method using process mining and to establish a manufacturing process mining system by analyzing empirical data. In this research, the manufacturing process was analyzed by process mining technology using transaction data extracted from MES. A relationship model of the manufacturing process and equipment was derived, and various performance analyzes were performed on the derived process model from the viewpoint of work, equipment, and time. The results of this analysis are highly effective in shortening process lead times (bottleneck analysis, time analysis), improving productivity (throughput analysis), and reducing costs (equipment analysis).

Design of On-line Process Control with Variable Measurement Interval

  • Park, Changsoon
    • Journal of the Korean Statistical Society
    • /
    • 제29권3호
    • /
    • pp.319-336
    • /
    • 2000
  • A mixed model with a white noise process and an IMA(0,1,1) process is considered as a process model. It is assumed that the process is a white noise in the absence of a special cause and the process changes to an IMA(0,1,1) due to a special cause. One useful scheme in measuring the process level is to use the variable measurement interval (VMI) between measurement times according to the value of the previous chart statistic. The advantage of the VMI scheme is to measure the process level infrequently when in control to save the measurement cost and to measure frequently when out of control to save the off-target cost. This paper considers the VMI scheme in order to detect changes in the process model from a white noise to an IMA(0,1,1). The VMI scheme is shown to be effective compared to the standard fixed measurement interval (FMI) scheme in both statistical and economic contexts.

  • PDF

시스템적 접근을 통한 레이저 미세가공 설계 프로세스 개발에 관한 연구 (A Study on Application of Systems Approach for Laser Micro Machining Design Process)

  • 문성욱;박영원;남기중
    • 한국레이저가공학회지
    • /
    • 제10권3호
    • /
    • pp.15-24
    • /
    • 2007
  • In this paper laser micromachining system design process for commercialization is suggested. The constructed system design process is properly adjusted for laser micromachining area after tailoring engine process of system engineering process such as requirement analysis, functional analysis and allocation, system synthesis and system optimization process. In the current laser machining system design, system components and specifications are determined on the basis of experimental experience which a laser is being used in machining some materials as well as the current machining and research trend. In this paper, however, systematic process is suggested in addition to experimental experience, which the laser and system components and their specifications are decided in the process of definition of functional requirements and engine design variables of system to satisfy the customer's requirements.

  • PDF

입상활성탄 공정의 진단 및 효율적 운영방안: D 정수장을 중심으로 (Assessment and Optimization of Granular Activated Carbon (GAC) Process in Water Treatment Process)

  • 김성수;이경혁
    • 상하수도학회지
    • /
    • 제19권6호
    • /
    • pp.781-790
    • /
    • 2005
  • Granular Activated Carbon(GAC) is widely used in drinking water treatment. Many of the problems occurring in the GAC process are associated with the operation goal and performance. The purpose of this study were to evaluate the design, operation, and performance of granular activated carbon process in D water treatment plant. The optimal operation conditions of GAC process such as backwashing condition, granular activated carbon replacement time were discussed. The design, operation and performance of GAC process is influenced by their raw water characteristics and placement within the treatment process sequence. A critical analysis of plants experience and the information from the literature identifies the effectiveness of GAC process and indicates where modifications in design and operation could lead to improved performance. It would be useful to evaluate and optimize the GAC process in other treatment plant.

따라 말하기 과제에서의 음향적 처리와 음운적 처리 (Acoustic and phonological processes in the repetition tasks)

  • 유세진;이경민
    • 한국인지과학회:학술대회논문집
    • /
    • 한국인지과학회 2010년도 춘계학술대회
    • /
    • pp.42-47
    • /
    • 2010
  • Speech shares acoustic features with other sound-based processing, which makes it difficult to distinguish phonological process from acoustic process in speech processing. In this study, we examined the difference between acoustic process and phonological process during repetition tasks. By contrasting various stimuli in different lengths, we localized neural correlates of acoustic process within bilateral superior temporal gyrus, which was consistent with the previous studies. The activated patterns were widely overlapped between words and pseudowords, i.e., contents-free. In contrast, phonological process showed left-lateralized activation in middle temporal gyrus located at anterior temporal areas. It implies that phonological process is contents-specific as shown in our previous study, and at the same time, more language-specific. Thus, we suggest that phonological process is distinguished from acoustic process in that it is always accompanied with the obligatory access to available phonological codes, which can be an entry of the mental lexicon.

  • PDF

설계프로세스의 표현과 분석을 위한 프로세스 뷰어 개발과 적용 (Development and Application of a Process Visualizer to Represent and Analyze Design Process)

  • 김성아
    • 한국실내디자인학회논문집
    • /
    • 제15권3호
    • /
    • pp.193-200
    • /
    • 2006
  • Any design process is interwoven with numerous intermediate design representations and information. On the other hand, designers proceed the design through various activities. It has always been a difficult task to model the design process, yet there are many significant research outputs that explain the design process through the cognitive approaches. This research started from the necessity of an interactive system which externalize the elements of design process in a visual or tangible manner. In order to do so, a design model, specifically a design process representation model was necessary to capture and represent design process. Several concepts such as design issue, design concept, and design form were defined through the empirical studies of design practices. The assumption is that the design process can be effectively captured by the presented system and it can help both designers and tutors review and analyze the design process. It should also help novice designers learn from expert designer's design process patterns. The system represents design process pattern in a interactive graphic environment. It also provides various useful features to enhance the analysis of design process. This paper presents theoretical groundwork and development process of the design process visualizer. The representation model is presented, and the application of the system is reviewed. Discussions on the further development directions include critical evaluation of the system.

Fabrication of TFTs for LCD using 3-Mask Process

  • You, Soon-Sung;Cho, Heung-Lyul;Kwon, Oh-Nam;Nam, Seung-Hee;Chang, Yoon-Gyoung;Kim, Ki-Yong;Cha, Soo-Yeoul;Ahn, Byung-Chul;Chung, In-Jae
    • Journal of Information Display
    • /
    • 제6권3호
    • /
    • pp.18-21
    • /
    • 2005
  • A new technology for reducing photolithography process from a four step to a three step process in the fabrication of TFT LCD is introduced. The core technology for 3-mask-TFT processes is the lift-off process [1], by which the PAS and PXL layers can be formed simultaneously. A different method of the lift-off process was developed in order to enhance the performance of efficiency with conventional positive and not negative PR which is the generally used in other lift-off process. In addition, the removal capacity of the ITO/PR in lift-off process was evaluated. The evaluation results showed that the new process can be run in conventional TFT production condition. In order to apply this new process in existing TFT process, several tests were conducted to ensure stability of the TFT process. It was found that the outgases from PR on the substrate in ITO sputtering chamber do not raise any problem, and the deposited ITO film beside the PR has conventional ITO qualities. Furthemore, the particles that were produced due to the ITO chips in PR strip bath could be reduced by the existing filtering system of stripper. With the development of total process and design of the structure for TFT using this technology, 3-mask-panels were achieved in TN and IPS modes, which showed the same display performances as those with the conventional 4mask process. The applicability and usefulness of the 3-mask process has already verified in the mass production line and in fact it currently being used for the production of some products.

다단계 반도체 제조공정에서 함수적 입력 데이터를 위한 모니터링 시스템 (A Monitoring System for Functional Input Data in Multi-phase Semiconductor Manufacturing Process)

  • 장동윤;배석주
    • 대한산업공학회지
    • /
    • 제36권3호
    • /
    • pp.154-163
    • /
    • 2010
  • Process monitoring of output variables affecting final performance have been mainly executed in semiconductor manufacturing process. However, even earlier detection of causes of output variation cannot completely prevent yield loss because a number of wafers after detecting them must be re-processed or cast away. Semiconductor manufacturers have put more attention toward monitoring process inputs to prevent yield loss by early detecting change-point of the process. In the paper, we propose the method to efficiently monitor functional input variables in multi-phase semiconductor manufacturing process. Measured input variables in the multi-phase process tend to be of functional structured form. After data pre-processing for these functional input data, change-point analysis is practiced to the pre-processed data set. If process variation occurs, key variables affecting process variation are selected using contribution plot for monitoring efficiency. To evaluate the propriety of proposed monitoring method, we used real data set in semiconductor manufacturing process. The experiment shows that the proposed method has better performance than previous output monitoring method in terms of fault detection and process monitoring.