• 제목/요약/키워드: In-plane flow

검색결과 940건 처리시간 0.028초

Laboratory investigation of the effects of translation on the near-ground tornado flow field

  • Razavi, Alireza;Sarkar, Partha P.
    • Wind and Structures
    • /
    • 제26권3호
    • /
    • pp.179-190
    • /
    • 2018
  • Translation of tornadoes is an important feature in replicating the near-ground tornado flow field which has been simulated in previous studies based on Ward-type tornado simulators using relative motion of the ground plane. In this laboratory investigation, effects of translation on the near-ground tornado flow field were studied using the ISU Tornado Simulator that can physically translate over a ground plane. Two translation speeds, 0.15 m/s and 0.50 m/s, that scale up to those corresponding to slowly-moving tornadoes in the field were selected for this study. Compared with the flow field of a stationary tornado, the simulated tornado with translation had an influence on the spatial distribution and magnitude of the horizontal velocities, early reversal of the radial inflow, and expansion of the core radius. Maximum horizontal velocities were observed to occur behind the center of the translating tornado and on the right side of its mean path. An increase in translation speed, resulted in reduction of maximum horizontal velocities at all heights. Comparison of the results with previous studies that used relative motion of the ground plane for simulating translating tornadoes, showed that translation has similar effects on the flow field at smaller radial distances (~2 core radius), but different effects at larger radial distances (~4 core radius). Further, it showed that the effect of translation on velocity profiles is noticeable at and above an elevation of ~0.6 core radius, unlike those in studies based on the relative motion of the ground plane.

폐색으로 인한 부직포의 투수능 저하 현상 (Permeability Reduction of Geotextile Filters Induced by Clogging)

  • 이인모;김주현
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.481-488
    • /
    • 2000
  • The mechanism of soil-geotextile system has been studied among researchers since the application of geotextile as a replacement of graded granular filters is rapidly growing. The interaction of soils with geotextile is rather complicated so that its design criteria are mostly based on empiricism. Hence, it is essential to study the characteristics of fine particles transport into geotextile induced by the groundwater flow In this study, the permeability reduction in the soil-filter system due to clogging phenomenon is evaluated. An extensive research program is performed using two typical weathered residual soils which are sampled at Shinnae-dong and Poi-dong area in Seoul. Two separate simulation tests with weathered residual soil are peformed: the one is the filtration test(cross-plane flow test): and the other is the drainage test(in-plane flow test). Needle punched non-woven geotextiles are selected since it is often used as a drainage material in the field. The compatibility of the soil-filter system is investigated with emphasis on the clogging phenomenon. The hydraulic behaviour of the soil-filter system is evaluated by changing several testing conditions.

  • PDF

FuzzyGuard: A DDoS attack prevention extension in software-defined wireless sensor networks

  • Huang, Meigen;Yu, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권7호
    • /
    • pp.3671-3689
    • /
    • 2019
  • Software defined networking brings unique security risks such as control plane saturation attack while enhancing the performance of wireless sensor networks. The attack is a new type of distributed denial of service (DDoS) attack, which is easy to launch. However, it is difficult to detect and hard to defend. In response to this, the attack threat model is discussed firstly, and then a DDoS attack prevention extension, called FuzzyGuard, is proposed. In FuzzyGuard, a control network with both the protection of data flow and the convergence of attack flow is constructed in the data plane by using the idea of independent routing control flow. Then, the attack detection is implemented by fuzzy inference method to output the current security state of the network. Different probabilistic suppression modes are adopted subsequently to deal with the attack flow to cost-effectively reduce the impact of the attack on the network. The prototype is implemented on SDN-WISE and the simulation experiment is carried out. The evaluation results show that FuzzyGuard could effectively protect the normal forwarding of data flow in the attacked state and has a good defensive effect on the control plane saturation attack with lower resource requirements.

Flow visualization and analysis of wake behind a sinusoidal cylinder

  • Nguyen A.T.;Lee S. J.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2003년도 추계학술대회 논문집
    • /
    • pp.31-34
    • /
    • 2003
  • The near wake behind a sinusoidal cylinder has been investigated quantitatively using hot-wire anemometer and qualitative. The mean velocity and turbulence intensity were measured in streamwise and spanwise direction. The results show that the wake in the saddle plane has a longer vortex formation region and rapid reversed flow than that in nodal plane. The elongated vortex formation region of sinusoidal cylinder is related with drag reduction. In addition, the flow visualized with particle tracing method support the flow characteristics of sinusoidal cylinder measured by hot-wire.

  • PDF

Single Plane Illumination Microscopy - MicroPIV를 이용한 버블 유동에서 외부 자계 영향을 받는 자성입자 가시화 (Flow Visualization of Magnetic Particles under the external magnetic field in bubbly flow using Single Plane Illumination Microscopy - MicroPIV)

  • 이창제;조경래;이상엽
    • 한국가시화정보학회지
    • /
    • 제19권1호
    • /
    • pp.36-42
    • /
    • 2021
  • This study measured the velocity of magnetic particles inside the power generation using external heat sources. Single Plane Illumination Microscopy (SPIM) was used to measure magnetic particles that are simultaneously affected by bubbly flow and magnetic field. It has the advantage of reducing errors due to particle superposition by illuminating the thin light sheet. The hydraulic diameter of the power generation is 3mm. Its surface is covered with a coil with a diameter of 0.3 mm. The average diameter of a magnetic particle is 200nm. The excitation and emission wavelengths are 530 and 650nm, respectively. In order to find out the flow characteristics, a total of four velocity fields were calculated in wide and narrow gap air bubbles, between the wall and the air bubble and just below the air bubble. Magnetic particles showed up to 8.59% velocity reduction in the wide gap between air bubbles due to external magnetic field.

벽면에 근접해서 회전하는 원주의 유동장 특성 (The Flow Field Characteristics of a Rotating Circular Cylinder near a Plane Wall)

  • 강명훈;김광석;노기덕
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권2호
    • /
    • pp.166-172
    • /
    • 2007
  • The flow around a rotating circular cylinder near a plane wall is investigated by the measurement of the lift acting on the cylinder and by the flow visualization using the hydrogen bubble technique in the circulating water tank. The experimental parameters are the rotating direction of the cylinder. the space ratios $H/D(H/D=0.05{\sim}0.5)$ between cylinder and plane wall and the velocity ratios ${\alpha}({\alpha}=0{\sim}{\pm}2.0)$. In the case of clockwise, the lift on the rotating circular cylinder was increased with the reduction of the space ratios and with the velocity ratios, the upper separation point was more shifted in the rotating direction with them. In the case of anticlockwise, the absolute value of the lift on the rotating circular cylinder was increased with increasing the space ratios and the velocity ratios. the lower separation point was more shifted in the rotating direction with them.

콘크리트댐 저면 침수에 관한 고찰 (A Study on Seepage of the Concrete Dam base)

  • 정형식;신방웅
    • 한국농공학회지
    • /
    • 제18권1호
    • /
    • pp.4071-4078
    • /
    • 1976
  • The authors analyzed the seepage by means of the following mathmatical solutions of the Laplace Equations on the given boundary conditions. The boundaries of the flow region are of two types i) impervious boundaries (${\Phi}$=constant), and ii) reservoir boundaries (${\Phi}$=constant). The corresponding w plane, bounding the flow region, is the rectangle in Fig. 8-a. As the z plane and w plane are both polygons, by means of the Schwarz-Christoffel transformation the flow region in each of these planes can be mapped con for mally onto the same half of an auxiliary t plane, there by yielding, say, the functions z=f1(t) and w=f2(t). Then, either by eliminating the variable t or by using t as a parameter, the function w=f(z) can be established.

  • PDF

평면팁과 스퀼러팁 터빈 동익의 압력손실 특성 비교 (Comparisons of Aerodynamic Loss Generated by a Squealer-Tip Turbine Rotor Blade with That by a Plane-Tip One)

  • 채병주;이상우
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.161-164
    • /
    • 2006
  • Three-dimensional flow and aerodynamic loss in the tip-leakage flow region of a high-turning first-stage turbine rotor blade with a squealer tip have been measured with a straight miniature five-hole probe for the tip gap-to-chord ratio, h/e, of 2,0%. This squealer tip has a indent-to-chord ratio, $h_{st}/c$, of 5.5%. The results are compared with those for a plane tip ($h_{st}/c\;=\;0.0%$). The squealer tip tends to reduce the mass flow through the tip gap and to suppress the development of the tip-leakage vortex. Therefore, it delivers lower aerodynamic loss in the near-tip region than the plane tip does. At the mid-span, however, the aerodynamic loss has nearly the same value for the two different tips.

  • PDF

선형터빈 케스케이드 통로내의 2차 유동과 손실에 관한 연구 (The Experimental Investigation of the Secondary Flow and Losses Within the Plane Turbine Cascade Passage)

  • 이기백;양장식;나종문
    • 대한기계학회논문집
    • /
    • 제19권3호
    • /
    • pp.784-795
    • /
    • 1995
  • This paper represents the results of the experiments of the three-dimensional flow and the aerodynamic loss caused by the three-dimensional flow within the plane bucket blades. To research the secondary flow and the aerodynamic loss, the large-scale plane bucket blade of lst-stage in the low pressure steam turbine is made of FRP. The detailed investigation of the secondary flow and the aerodynamic loss using 5-hole pressure probe within turbine cascade has been carried out in the low speed wind tunnel. The limiting streamlines of the suction and endwall surface have been visualized by the oil film method. The flow visualization of the secondary flow has been performed by the laser light sheet technique and image processing system. By using the method mentioned above, it is possible to observe the evolution of the pitchwise mass-averaged flow deviation angle and total pressure loss coefficient, the secondary flow, and the aerodynamic loss through the cascade.