• Title/Summary/Keyword: In-plane displacement

Search Result 729, Processing Time 0.027 seconds

Out-of-plane Deformation Measurement of Spherical Glasses Lens Using ESPI (ESPI를 이용한 구면 안경렌즈의 면외 변형 측정)

  • Yang, Seung-Pill;Kim, Kyoung-Suk;Jang, Ho-Sub;Kim, Hyun-Min
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.4
    • /
    • pp.77-81
    • /
    • 2007
  • The spherical lens is typically classified by the refractive power into two groups such as (+) diopter lens and (-) diopter lens. The deformation occurred by the external force that is applied to a lens is caused by the increase or the decrease in the diopter of a lens. In this paper, the deformation of the lens was quantitatively measured by using ESPI (Electronic Speckle Pattern Interferometry) which have been used in the optical measurement field for past few years. ESPI has an advantage that the deformation of an object can be measured precisely by using coherence of the light. The experiment was carried out to the totally 16 types of plastic lens. It was confirmed that the deformation was decreased by increasing the diopter of the lens when same displacement was applied to the lens in case of (+) diopter lens and was increased by decreasing the diopter of the lens in case of (-) diopter lens. Also, it was found that the deformation of (+) diopter lens is less than that of (-) diopter lens. Therefore, with these results, it is expected that the possibility of the quantitative measurement for variation of the optical defect caused by the deformation of a lens when the deformation is occurred to the various types of the lens can be presented and that the application in the lens industrial field can be performed.

  • PDF

THE THREE DIMENSIONAL FINITE ELEMENT ANALYSIS OF THE BONE ANCHORED FIXED PROSTHESIS ACCORDING TO THE LOAD CONDITION (골유착 고정성 보철물 하에서 하중조건에 따른 삼차원 유한요소법적 분석)

  • Yang, Soon-Ik;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.4
    • /
    • pp.780-806
    • /
    • 1995
  • The purpose of this study was to describe the application of 3D finite element analysis to determine resultant stresses on the bone anchored fixed prosthesis, implants and supporting bone of the mandible according to fixture numbers and load conditions. 4 or 6 fixtures and the bone anchored fixed prosthesis were placed in 3D finite element mandibular arch model which represents an actual mandibular skull. A $45^{\circ}$ diagonal load of 10㎏ was labiolingually applied in the center of the prosthesis(P1). A $45^{\circ}$ diagonal load of 20㎏ was buccolingually applied at the location of the 10mm or 20mm cantilever posterior to the most distal implant(P2 or P3). The vertical distribution loads were applied to the superior surfaces of both the right and the left 20mm cantilevers(P4). In order that the boundary conditions of the structure were located to the mandibular ramus and angle, the distal bone plane was to totally fixed to prevent rigid body motion of the entire model. 3D finite element analysis was perfomed for stress distribution and deflection on implants and supporting bone using commercial software(ABAQUS program. for Sun-SPARC Workstation. The results were as follows : 1. In all conditions of load, the hightest tensile stresses were observed at the metal lates of prostheses. 2. The higher tensile stresses were observed at the diagonal loads rather than the vertical loads 3. 6-implants cases were more stable than 4-implants cases for decreasing bending and torque under diagonal load on the anterior of prosthesis. 4. From a biomechanical perspective, high stress developed at the metal plate of cantilever-to-the most distal implant junctions as a consequence of loads applied to the cantilever extension. 5. Under diagonal load on cantilever extension, the 6-implants cases had a tendency to reduce displacement and to increase the reaction force of supporting point due to increasing the bendign stiffness of the prosthesis than 4-implants cases. 6. Under diagonal load on cantilever extension, the case of 10mm long cantilever was more stable than that of 20mm long cnatilever in respect of stress distribution and displacement. 7. When the ends of 10mm or 20mm long cantilever were loaded, the higher tensile stress was observed at the second most distal implant rather than the first most distal implant. 8. The 6-implants cases were more favorable about prevention of screw loosening under repeated loadings because 6-implants cases had smaller deformation and 4-implants cases had larger deformation.

  • PDF

Effect of Head Positioning in Panoramic Radiography on the Vertical and Horizontal Magnification : Displacement along the Sagittal and Transverse Plane (파노라마방사선사진에서 환자의 머리 위치가 하악 수직, 수평 확대율에 미치는 영향 : 전후방 및 좌우 이동)

  • Kim, Yong-Gun;Lee, Young-Kyun;An, Seo-Young
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.3
    • /
    • pp.249-258
    • /
    • 2013
  • The purpose of this study was to investigate how image magnification in dental panoramic radiography is influenced by object position. Five metal balls (4 mm in diameter, 2 for the anterior and 3 for the posterior region on the right side) were placed above alveolar crest of dry skull considering extraction socket and dental arch. Dry skull was radiographed using OP-100D (Instrumentarium Imaging Co., Tuusula, Finland) at proper and displaced position along the sagittal and transverse plane at 3 mm, 6 mm, 9 mm, 12 mm and 15 mm using special mount which can control precise movement. Images were stored in DICOM files and were measured by ruler equipped within INFINITT PACS software (Infinitt Co., Ltd., Seoul, Korea). The mean horizontal magnification was 1.224-1.439 and mean vertical magnification was 1.286 - 1.345 at proper position. Vertical magnification resulted in less variation (1.245-1.418) than horizontal magnification (0.798-6.297) according to the sagittal and transverse displacements. Head positioning is important for linear measurement on panoramic radiography and inclusion of standard object (for instance, metal ball) is helpful to anticipate exact magnification of panoramic radiographs at various location.

Numerical simulation and countermeasure on upheaval generation in the road caused by sliding of a slope (사면활동으로 야기된 도로부 융기발생에 대한 수치해석 및 고찰)

  • Kim, Seung-Hee;Rhee, Jong-Hyun;Koo, Ho-Bon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.833-841
    • /
    • 2008
  • Recently, the upheaval generation in the road which is under service had been reported. Due to the upheaval generation, total 4 lanes were forced to curtail to 3 lanes, and traffic was delayed. In normal situation of cut-slopes in korea, that condition is hard to detect since most cut-slopes contain discontinuous material, that is rock. Common collapses in rock-slopes is wedge failure, plane failure and toppling failure which is all individual mechanism of discontinuous rock mass. In contrast, such upheaval in the road in front of cut-slope can be generated only when circular movement is triggered within the cut-slope. In this sense, rock-slopes barely show any kind of movement in the road locates at the front of them. Numerical analysis is general method in simulation of slope displacement and evaluation of safety. However, numerical analysis programs which are related with rock-slopes are not able to simulate such upheaval movement because that programs are based on discontinuous modeling mechanism. In addition, although numerical analysis programs which are based on FEM/FDM and thus utilize continuous modeling mechanism are able to simulate circular movement and upheaval situation, they have weakness in reflecting discontinuities of rock-slope itself. In this study, detailed in-site investigation and numerical analysis based on in-site condition were performed in order to expect upheaval movement in the road. In this procedure, the FLAC program which uses continuous modeling method was utilized, and new approach reflecting discontinuity developed toward the road with a ubiquitous joint model was tried to derive reliable analysis result.

  • PDF

A Coupled Analysis of Smart Plate Under Electro-Mechanical Loading Using Enhanced Lower-Order Shear Deformation Theory (개선된 저차 전단 변형 이론을 이용한 전기, 기계 하중을 받는 스마트 복합재 구조물의 연성 해석)

  • Oh, Jin-Ho;Cho, Maeng-Hyo;Kim, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.121-128
    • /
    • 2007
  • Enhanced lower order shear deformation theory is developed in this study. Generally, lower order theories are not adequate to predict accurate deformation and stress distribution through the thickness of laminated plate. For the accurate prediction of detailed stress and deformation distributions through the thickness, higher order zigzag theories have been proposed. However, in most cases, simplified zigzag higher order theory requires $C_1$, shape functions in finite element implementation. In commercial FE softwares, $C_1$, shape functions are not so common in plate and shell analysis. Thus zigzag theories are useful for the highly accurate prediction of thick composite behaviors but they are not practical in the sense that they cannot be used conveniently in the commercial package. In practice, iso-parametric $C_0$ plate model is the standard model for the analysis and design of composite laminated plates and shells. Thus in the present study, an enhanced lower order shear deformation theory is developed. The proposed theory requires only $C_0$ shape function in FE implementation. The least-squared energy error between the lower order theory and higher order theory is minimized. An enhanced lower order shear deformation theory(ELSDT) in this paper is proposed for smart structure under complex loadings. The ELSDT is constructed by the strain energy transformation and fully coupled mechanical, electric loading cases are studied. In order to obtain accurate prediction, zigzag in-plane displacement and transverse normal deformation are considered in the deformation Held. In the electric behavior, open-circuit condition as well as closed-circuit condition is considered. Through the numerous examples, the accuracy and robustness of present theory are demonstrated.

Analysis of Response Characteristics According to Permanent Displacement in Seismic Slope (지진시 비탈면의 영구변위 발생에 따른 응답특성 분석)

  • Ahn, Jae-Kwang;Park, Sangki;Kim, Wooseok;Son, Su-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.12
    • /
    • pp.135-145
    • /
    • 2019
  • The slope collapse can be classified into internal and external factors. Internal factors are engineering factors inherent in the formation of slopes such as soil depth, slope angle, shear strength of soil, and external factors are external loading such as earthquakes. The external factor for earthquake can be expressed by various values such as peak ground acceleration (PGA), peak ground velocity (PGV), Arias coefficient (I), natural period (Tp), and spectral acceleration (SaT=1.0). Specially, PGA is the most typical value that defines the magnitude of the ground motion of an earthquake. However, it is not enough to consider the displacement in the slope which depends on the duration of the earthquake even if the vibration has the same peak ground acceleration. In this study, numerical analysis of two-dimensional plane strain conditions was performed on engineered block, and slope responses due to seismic motion of scaling PGA to 0.2 g various event scenarios was analyzed. As a result, the response of slope is different depending on the presence or absence of sliding block; it is shown that slope response depend on the seismic wave triggering sliding block than the input motion factors.

Analysis of Deformation and Stability of Slope at the Wiri Region of Local Road 999 Nearby Andong, Gyeongsangbukdo in Korea. (999번 지방도로 경상북도 안동시 위리 지역의 사면 변형 및 안정성 분석)

  • 장현식;장보안
    • The Journal of Engineering Geology
    • /
    • v.10 no.1
    • /
    • pp.1-12
    • /
    • 2000
  • Heaving of road and subsidence of slope took place at the Wiri region of the local highway 999 in Gyeongsangbukdo, Korea after heavy rain in the next year of construction. Although the state government had performed remedial treatments by reducing the angle and the height of the slope, deformation had never stopped. Therefore, we have preformed the analysis of deformation and stabilityof the slope. Study area consists of the Cretaceous shale, siltstone and sandstone and two faults are found. The major deformation occurred by sliding of rock mass along faults after heavy rain because not only thepore pressure at the fault plane and the unit weight of sliding mass increased, but did the shearstrength of saturated fault clay become very low. The decrease in shear strength of saturated fault clayis the major factor among the reasons for deformation. Numerical simulations using limit equilibriummodel, finite difference model and finite element model were performed for eight cross sections.Although safety factors are above 1.7 during the dry season, they become below 1.0 when groundwaterlevel raises to surface. The maximum displacement is about 15-3Ocm. However, safety factors increasedto above 2.4 and the maximum displacement is below 2.08cm after remedial treatment, Indicating thatthe slope becomes stable.

  • PDF

Computational optimisation of a concrete model to simulate membrane action in RC slabs

  • Hossain, Khandaker M.A.;Olufemi, Olubayo O.
    • Computers and Concrete
    • /
    • v.1 no.3
    • /
    • pp.325-354
    • /
    • 2004
  • Slabs in buildings and bridge decks, which are restrained against lateral displacements at the edges, have ultimate strengths far in excess of those predicted by analytical methods based on yield line theory. The increase in strength has been attributed to membrane action, which is due to the in-plane forces developed at the supports. The benefits of compressive membrane action are usually not taken into account in currently available design methods developed based on plastic flow theories assuming concrete to be a rigid-plastic material. By extending the existing knowledge of compressive membrane action, it is possible to design slabs in building and bridge structures economically with less than normal reinforcement. Recent research on building and bridge structures reflects the importance of membrane action in design. This paper describes the finite element modelling of membrane action in reinforced concrete slabs through optimisation of a simple concrete model. Through a series of parametric studies using the simple concrete model in the finite element simulation of eight fully clamped concrete slabs with significant membrane action, a set of fixed numerical model parameter values is identified and computational conditions established, which would guarantee reliable strength prediction of arbitrary slabs. The reliability of the identified values to simulate membrane action (for prediction purposes) is further verified by the direct simulation of 42 other slabs, which gave an average value of 0.9698 for the ratio of experimental to predicted strengths and a standard deviation of 0.117. A 'deflection factor' is also established for the slabs, relating the predicted peak deflection to experimental values, which, (for the same level of fixity at the supports), can be used for accurate displacement determination. The proposed optimised concrete model and finite element procedure can be used as a tool to simulate membrane action in slabs in building and bridge structures having variable support and loading conditions including fire. Other practical applications of the developed finite element procedure and design process are also discussed.

A ROENTGENOCEPHALOMETRIC STUDY ON THE CONDYLAR DISPLACEMENT IN ANGLE′S CLASS Ⅰ & Ⅲ MALOCCLUSION (Ⅰ급 및 Ⅱ급 부정교합자의 과두변위에 관한 두부방사선계측학적 연구)

  • Lee Jeong Hwa;Park Chang Seo
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.16 no.1
    • /
    • pp.69-79
    • /
    • 1986
  • The purpose of this investigation was to know correlation of mean values between centric occlusion and centric relation by the cephalogram in Angle's Class Ⅰ and Ⅲ malocclusion subjects. 22 adults with Angle's Class Ⅰ malocclusion (17 men and 5 women, 21 to 27 years of age) and 14 adults with Angle's Class Ⅲ malocclusion (10 men and 4 women, 21 to 27 years of age) were selected from the dental students in Yonsei University. Each subject was given two lateral cephalometric radiographies and cephalometric analysis was performed. All data from these analyses was recorded and statistically processed with CYBER computer system. 1. The results were obtained as follows: There was a strong positive correlation between centric occlusion and centric relation in all subjects with Angle's Class Ⅰ and Ⅲ malocclusion. 2. In Angle's Class Ⅰ malocclusion, measurements in lower facial height revealed significant difference between centric occlusion and centric relation (P<0.05). In Angle's Class Ⅲmalocclusion, measurements in facial axis angle, mandibular plane angle, convexity of A point, lower incisor protrusion, lower facial height revealed significant difference between centric occlusion and centric relation (P<0.05). 3. When the mandible was moved from centric occlusion to centric relation, the mean distance of mandibular movement was 1.27㎜ (0.2-2.8㎜) in Angle's Class Ⅰ malocclusion, 1.70㎜ (0.55-4.15㎜) in Angle's Class Ⅲ malocclusion, and 1.44㎜ (0.2-4.15㎜) in all subjects.

  • PDF

Comparison Analysis of Factor of Safety on Rock Slope in Boeun Region Using Distinct Element Method and Limit Equilibrium Method (개별요소법과 한계평형법을 이용한 보은지역 암반사면 안전율 비교해석)

  • 이지수;유광호;박혁진;민경덕
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.33-41
    • /
    • 2003
  • The large planar failure has occurred in a rock cut slope of highway construction site in Boeun. This area is considered to be unstable since the discontinuity, whose orientation is similar to the orientation of the failure plane, is observed in many areas. Therefore, several analysis techniques such as SMR, stereographic analysis, limit equilibrium, numerical analysis, which are commonly used in rock slope stability analysis, are adopted in this area. In order to analyze the stress redistribution and nonlinear displacement caused by cut, which are not able to be obtained in limit equilibrium method, DEM and shear strength reduction technique were used in this study. Then the factors of safety evaluated by shear strength reduction technique and limit equilibrium were compared. In addition, the factor of safety under fully saturated slope condition was calculated and subsequently, the effect of the reinforcement was evaluated.