• Title/Summary/Keyword: In-plane behavior

Search Result 999, Processing Time 0.029 seconds

A Computational Study on Creep-Fatigue behavior of Weld Interface Crack (용접 계면균열의 크리프-피로 거동에 대한 수치해석적 연구)

  • 이진상;윤기봉
    • Proceedings of the KWS Conference
    • /
    • 2000.04a
    • /
    • pp.264-266
    • /
    • 2000
  • In this study, analysis of creep-fatigue behavior of low alloy steel weld was performed. An interface was employed along the crack plane to simulate the interface between base metal and weld metal. A trapezoidal waveshapes was loaded cyclically and analysis result was compared with that of monotonic load. The material was assumed as elastic-plastic-secondary creeping material. Because the isotropic hardening plasticity model used in the last study cannot simulate the behavior of material under cyclic load, the linear kinematic hardening plasticity model was used. The behavior of strain field and $C_{t}$ parameter was obtained.d.

  • PDF

Nonlinear Seismic Behavior Analysis of Skewed Bridges Considering Pounding Between Deck and Abutment (상판과 교대의 충돌을 고려한 사교의 비선형 지진거동 해석)

  • Kang, Seung Woo;Choi, Kwang Kyu;Song, Si Young;Son, Min Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.301-310
    • /
    • 2016
  • There are differences in seismic behavior between non-skewed bridges and skewed bridges due to in-plane rotations caused by pounding between the skewed deck and its abutments during strong earthquake. Many advances have been made in developing design codes and guidelines for dynamic analyses of non-skewed bridges. However, there remain significant uncertainties with regard to the structural response of skewed bridges caused by unusual seismic response characteristics. The purpose of this study is performing non-linear time history analysis of the bridges using abutment-soil interaction model considering pounding between the skewed deck and its abutments, and analyzing global seismic behavior characteristics of the skewed bridges to assess the possibility of unseating. Refined bridge model with abutment back fill, shear key and elastomeric bearing was developed using non-linear spring element. In order to evaluate the amplification of longitudinal and transverse displacement response, non-linear time history analysis was performed for single span bridges. Far-fault and near-fault ground motions were used as input ground motions. According to each parameter, seismic behavior of skewed bridges was evaluated.

Structural Behavior of Cement Concrete Pavement at Transverse Joint Using Model Test

  • Ko, Young-Zoo;Kim, Kyung-Soo;Bae, Ju-Seong
    • KCI Concrete Journal
    • /
    • v.12 no.2
    • /
    • pp.23-30
    • /
    • 2000
  • This paper presents behavior of concrete pavement at transverse joint subject to static test load. The test was conducted on 1/10 scale model in the laboratory. Load transfer across the crack is developed either by the interlocking action of the aggregate particles at the faces of the joint or by a combination of aggregate interlock and mechanical devices such as dowel bars. In this study, significant three variables considered to the performance of joints were selected. : (a)diameter of dowel bars(2.5mm, 3.0mm, 4.0mm), (b)presence or absence of dowel bars, (c)aggregate types(crushed stone, round stone). Experimental results were analyzed to find relationships among displacement of discontinuous plane at jointed slab, load transfer efficiency and joint opening, etc. Displacement of discontinuous plane at joint was decreased according to the increase of dowel bar diameter. In addition, it is found that model slabs made using crushed stone had better load transfer characteristics by aggregate interlock than model slabs made using similarly graded round stone. Displacement of discontinuous plane was increased according to the increase of loading. In addition, it was decreased as dowel diameter(2.5mm, 3.0mm, 4.0mm) was increased. In the case of slab without dowel bars, displacement of discontinuous plane was greatly increased and load transfer effciency of slab applied crushed stone was shown 30 percent greater than round stone. In addition, load transfer efficiency of slabs, which were made using crushed and round stone without dowel bars, was decreased to 20 percent and 30 percent, respectively as it was compared with slabs made us-ing dowel bars.

  • PDF

Experimental hysteretic behavior of in-plane loaded reinforced grouted multi-ribbed aerated concrete blocks masonry walls

  • Li, Sheng-Cai;Dong, Jian-Xi;Li, Li-Feng
    • Structural Engineering and Mechanics
    • /
    • v.41 no.1
    • /
    • pp.95-112
    • /
    • 2012
  • In order to analyze the experimental hysteretic behavior of the in-plane loaded reinforced grouted multi-ribbed aerated concrete blocks masonry walls (RGMACBMW), we have carried out the pseudo static testing on the six specimens of RGMACBMW. Based on the test results and shear failure characteristics, the shear force hysteretic curves and displacement envelope curves of the models were obtained and discussed. On the basis of the hysteretic curves a general skeleton curve of the shear force and displacement was formed. The restoring model was adopted to analyze the seismic behavior and earthquake response of RGMACBMW. The deformation capacity of the specimens was discussed, and the formulas for calculating the lateral stiffness of the walls at different loading stages were proposed as well. The average lateral displacement ductility factor of RGMACBMW calculated based on the test results was 3.16. This value illustrates that if the walls are appropriately designed, it can fully meet the seismic requirement of the structures. The quadri-linear restoring models of the walls degradation by the test results accurately reflect the hysteretic behaviors and skeleton curves of the masonry walls. The restoring model can be applied to the RGMACBMW structure in earthquake response analysis.

Prediction of Microtexture Evolution Behavior in Ta-10W Alloy during Cold Rolling using the VPSC Polycrystal Model (VPSC 다결정 모델을 이용한 냉간 압연 시 Ta-10W 합금에서 발생하는 미시집합조직 발달 거동 예측)

  • K. S. Park;S.-H. Choi
    • Transactions of Materials Processing
    • /
    • v.33 no.5
    • /
    • pp.363-370
    • /
    • 2024
  • This study investigated the evolution behavior of microtexture developed in Ta-10W alloy during cold rolling. The changes in microtexture during the cold rolling process were experimentally analyzed using EBSD techniques. At relatively low rolling reductions (20%, 40%), θ-fiber and α-fiber textures were developed. However, as the reduction increased to 60% and 80%, strong α-fiber and γ-fiber textures were observed. The microtexture behavior was theoretically predicted using the VPSC polycrystal model under plane strain compression(PSC) and conditions considering deformation in the transverse direction. The VPSC model results under PSC predicted the strong development of θ-fiber texture at low reductions (20%, 40%) and the development of α-fiber and γ-fiber textures as the reduction increased to 60% and 80%. The VPSC model considering transverse deformation predicted results similar to the plane strain PSC at low reductions (20%, 40%), but as the reduction increased to 60% and 80%, it predicted that the development of α-fiber texture would be relatively weak, and the θ-fiber texture would still remain even at an 80% reduction. It was confirmed that the VPSC model considering transverse deformation more accurately predicts the evolution behavior of microtexture observed experimentally.

Dynamic behavior of a functionally graded plate resting on Winkler elastic foundation and in contact with fluid

  • Shafiee, Ali A.;Daneshmand, Farhang;Askari, Ehsan;Mahzoon, Mojtaba
    • Structural Engineering and Mechanics
    • /
    • v.50 no.1
    • /
    • pp.53-71
    • /
    • 2014
  • A semi-analytical method is developed to consider free vibrations of a functionally graded elastic plate resting on Winkler elastic foundation and in contact with a quiescent fluid. Material properties are assumed to be graded distribution along the thickness direction according to a power-law in terms of the volume fractions of the constituents. The fluid is considered to be incompressible and inviscid. In the analysis, the effect of an in-plane force in the plate due to the weight of the fluid is taken into account. By satisfying the compatibility conditions along the interface of fluid and plate, the fluid-structure interaction is taken into account and natural frequencies and mode shapes of the coupled system are acquired by employing energy methods. The results obtained from the present approach are verified by those from a finite element analysis. Besides, the effects of volume fractions of functionally graded materials, Winkler foundation stiffness and in-plane forces on the dynamic of plate are elucidated.

Deformation and Strength Characteristics of Compacted Weathered Granite Soil under Pland Strain Condition (평면변형률 조건에서 다짐화강토의 변형과 강도특성)

  • 정진섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.2
    • /
    • pp.70-79
    • /
    • 1999
  • The lower ground of structure, in which the strip loads, such as earth dams and embankments , are signiificantly working on , is required to be interpreted as a state of plane strain where the strain of intermediated principal stress direction is put '0' . The plane strain state is frquently observed in actural soil engineering case. For those case, drained stress-strain and strength behavior of Iksan weathered granite soil prepared in cubical specimens with cross-anisotropic fabric was studied by conventional triaxial compression, plane strain and cubial triaxial tests with independent control of the three principal stress. All specimens were loaded under conditions of principl stress directions fixed and aligned with the directions of the material axes. As a result of research , when a ground condition is analyzed under plane strain state, the shear strength obtained from the conventional triaxial compression test can be understimated.

  • PDF

Efficient models for analysis of a multistory structure with flexible wings

  • Moon, Seong-Kwon;Lee, Dong-Guen
    • Structural Engineering and Mechanics
    • /
    • v.13 no.5
    • /
    • pp.465-478
    • /
    • 2002
  • This study lays emphasis on the development of efficient analytical models for a multistory structure with wings, including the in-plane deformation of floor slabs. For this purpose, a multistory structure with wings is regarded as the combination of multistory structures with rectangular plan and their junctions. In addition, a multistory structure with a rectangular plan is considered to be an assemblage of two-dimensional frames and floor slabs connecting two adjacent frames at each floor level. This modeling, concept can be easily applied to multistory structures with plans in the shape of L, T, Y, U, H, etc. To represent the in-plane deformation of floor slabs efficiently, a two-dimensional frame and the floor slab connecting two adjacent frames at each floor level are modeled as a stick model with two degrees of freedom per floor and a stiff beam with shear deformations, respectively. Three models are used to investigate the effect of in-plane deformation of the floor slab at the junction of wings on the seismic behavior of structures. Based on the comparison of dynamic analysis results obtained using the proposed models and three-dimensional finite element models, it could be concluded that the proposed models can be used as an efficient tool for an approximate analysis of a multistory structure with wings.

Simulation on Heterogeneous Deformation Behavior of AA1100 During Multi-axial Diagonal Forging Using Finite Element Analysis (유한요소해석을 이용한 다축대각단조 시 AA1100합금의 불균일 변형 거동에 관한 모사)

  • Kim, M.S.;Lee, S.E.;Lee, S.;Jeong, H.T.;Choi, S.H.
    • Transactions of Materials Processing
    • /
    • v.28 no.2
    • /
    • pp.98-104
    • /
    • 2019
  • The present study numerically simulates the deformation heterogeneity developed in AA1100 during multi-axial diagonal forging (MADF) using finite element analysis (FEA). Diagonal forging type consisting of diagonal forging (DF) and return-diagonal forging (R-DF) proved to be relatively beneficial compared to plane forging type which includes plane forging (PF) and return-plane forging (R-PF) for minimizing the non-uniformity of deformation developed in workpieces. Simulation of the effective strain generated in workpieces during the two types of forging was done using 3-D FEA. FEA shows the effect of friction coefficient on the deformation behavior on workpieces. The simulation of 2 types forging with different friction coefficients revealed that the magnitude of barreling effect and strain heterogeneity in workpieces increases with an increase in the friction coefficient.

Design for Out-of-Plane Direction of Nonstructural Masonry Walls Using Finite Element Analysis (유한요소해석을 활용한 비구조 조적벽의 면외방향 설계)

  • Choi, Myeong Gyu;Yu, Eunjong;Kim, Min Jae
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.23-30
    • /
    • 2022
  • This study proposed a simplified finite element analysis procedure for designing the nonstructural masonry wall in the out-of-plane direction. The proposed method is a two-step elastic analysis procedure by bilinearizing the behavior of the masonry wall. The first step analysis was conducted with initial stiffness representing the behavior up to the effective-yield point, and the second step analysis was conducted with post-yield stiffness. In addition, the orthotropic material property of the masonry was considered in the FE analysis. The maximum load was estimated as the sum of the maximum loads in the first and second step analyses. The maximum load was converted into the moment coefficients and compared with those from the yield line method applied in Eurocode 6. The moment coefficients calculated through the proposed procedure showed a good match with those from the yield line method with less than 6% differences.