• Title/Summary/Keyword: In-plane Wave

Search Result 812, Processing Time 0.024 seconds

Analysis of Stability Condition and Wideband Characteristics of 3D Isotropic Dispersion(ID)-FDTD Algorithm (3차원 ID-FDTD 알고리즘의 Stability Condition과 광대역 특성 분석)

  • Kim, Woo-Tae;Koh, Il-Suek;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.4
    • /
    • pp.407-415
    • /
    • 2011
  • The stability condition and wideband characteristics of 3D ID-FDTD algorithm which has low dispersion error with isotropic dispersion are presented in this paper. 3D ID-FDTD method was proposed to improve the defect of the Yee FDTD such as the anisotropy and large dispersion error. The published paper calculated the stability condition of 3D ID-FDTD algorithm by using numerical method, however, it is thought that the examples were not sufficient to verify the stability condition. Thus, in this paper, various simulations are included in order to hold reliability under the conditions that the plane wave propagation is assumed with a single frequency and a wideband frequency. Also, the 3D ID-FDTD algorithm is compared to those that have the similar FDTD algorithm with ID-FDTD such as Forgy's method and non-standard FDTD method in a wideband. Finally, the radar cross section(RCS) for the large sphere with high dielectric constant is calculated.

Architectural Elements of the Fluvial Deposits of Meander Bends in Midstream of the Yeongsan River, Korea

  • Chung, Gong-Soo;Lee, Jin-Young;Yang, Dong-Yoon;Kim, Ju-Yong
    • Journal of the Korean earth science society
    • /
    • v.26 no.8
    • /
    • pp.809-820
    • /
    • 2005
  • The fluvial sequence developed along the channel margin of meander bends in the midstream of the Yeongsan River consists of channel deposits at the bottom and overbank deposits at the top, and shows a fining-upward trend. The fluvial deposits consist of 7 sedimentary facies, and facies association forms 7 architectural elements. The channel deposits formed as channel bar or point bar. The channel bar deposits consisted of architectural element of gravel bedform were formed by channel lag deposits within the channel; whereas, the channel bar deposits consisted of architectural elements of downcurrent-dipping inclined strata sets, cross-stratified and horizontally stratified sets, and horizontally stratified sets were formed by downstream migration of sand wave or downstream transport of sand by traction current in the upper flow regime conditions within the channel. The point bar deposits consist of architectural elements of down current-dipping inclined strata sets, horizontally stratified sets, cross-stratified and horizontally stratified sets, and laterally inclined and horizontally stratified sets. These architectural elements are thought to have been formed by the combined effects of the migration of sand dunes and the formation of horizontal lamination in the upper flow regime plane bed conditions. The overbank deposits consist of the architectural elements of overbank fine and sand sheet and lens. The overbank fines were formed by settling of mud from slackwater during flooding over floodplain whereas the sand sheet and lens were formed by traction of sands introduced episodically fiom channel to the overbank during flooding.

First-principles Study on the Magnetism and Electronic Structure of (CrAs)3(MnAs)3(110) Superlattice ((CrAs)3(MnAs)3(110) 초격자의 전자구조와 자성에 대한 제일원리 연구)

  • Lee, J.I.;Hong, S.C.
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.2
    • /
    • pp.111-114
    • /
    • 2006
  • We investigated the magnetism and electronic structures for the layered structures consisting of (110) layers of zinc-blende CrAs and MnAs. We calculated the electronic structures for $(CrAs)_3(MnAs)_3(110)$ superlattice consisted of alternating three layers of CrAs(110) and MnAs(110) by the full-potential linearized augmented plane wave (FLAPW) method. The calculated magnetic moment of Cr in interface layer ($3.07\;\mu_B$) was slightly larger than that of Cr atom in center layer ($3.06\;\mu_B$), while that of interface Mn atom ($3.74\;\mu_B$) was slightly smaller than the value of Mn atom in center layer ($3.76\;\mu_B$). The electronic structure and half-metallicity in this superlattice were discussed using the calculated density of states.

Compact 1×2 and 2×2 Dual Polarized Series-Fed Antenna Array for X-Band Airborne Synthetic Aperture Radar Applications

  • Kothapudi, Venkata Kishore;Kumar, Vijay
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.2
    • /
    • pp.117-128
    • /
    • 2018
  • In this paper, compact linear dual polarized series-fed $1{\times}2$ linear and $2{\times}2$ planar arrays antennas for airborne SAR applications are proposed. The proposed antenna design consists of a square radiating patch that is placed on top of the substrate, a quarter wave transformer and $50-{\Omega}$ matched transformer. Matching between a radiating patch and the $50-{\Omega}$ microstrip line is accomplished through a direct coupled-feed technique with the help of an impedance inverter (${\lambda}/4$ impedance transformer) placed at both horizontal and vertical planes, in the case of the $2{\times}2$ planar array. The overall size for the prototype-1 and prototype-2 fabricated antennas are $1.9305{\times}0.9652{\times}0.05106{{\lambda}_0}^3$ and $1.9305{\times}1.9305{\times}0.05106{{\lambda}_0}^3$, respectively. The fabricated structure has been tested, and the experimental results are similar to the simulated ones. The CST MWS simulated and vector network analyzer measured reflection coefficient ($S_{11}$) results were compared, and they indicate that the proposed antenna prototype-1 yields the impedance bandwidth >140 MHz (9.56-9.72 GHz) defined by $S_{11}$<-10 dB with 1.43%, and $S_{21}$<-25 dB in the case of prototype-2 (9.58-9.74 GHz, $S_{11}$< -10 dB) >140 MHz for all the individual ports. The surface currents and the E- and H-field distributions were studied for a better understanding of the polarization mechanism. The measured results of the proposed dual polarized antenna were in accordance with the simulated analysis and showed good performance of the S-parameters and radiation patterns (co-pol and cross-pol), gain, efficiency, front-to-back ratio, half-power beam width) at the resonant frequency. With these features and its compact size, the proposed antenna will be suitable for X-band airborne synthetic aperture radar applications.

A first-principles theoretical investigation of the structural, electronic and magnetic properties of cubic thorium carbonitrides ThCxN(1-x)

  • Siddique, Muhammad;Rahman, Amin Ur;Iqbal, Azmat;Azam, Sikander
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1373-1380
    • /
    • 2019
  • Besides promising implications as fertile nuclear materials, thorium carbonitrides are of great interest owing to their peculiar physical and chemical properties, such as high density, high melting point, good thermal conductivity. This paper reports first-principles simulation results on the structural, electronic and magnetic properties of cubic thorium carbonitrides $ThC_xN_{(1-x)}$ (X = 0.03125, 0.0625, 0.09375, 0.125, 0.15625) employing formalism of density-functional-theory. For the simulation of physical properties, we incorporated full-potential linearized augmented plane-wave (FPLAPW) method while the exchange-correlation potential terms in Kohn-Sham Equation (KSE) are treated within Generalized-Gradient-Approximation (GGA) in conjunction with Perdew-Bruke-Ernzerhof (PBE) correction. The structural parameters were calculated by fitting total energy into the Murnaghan's equation of state. The lattice constants, bulk moduli, total energy, electronic band structure and spin magnetic moments of the compounds show dependence on the C/N concentration ratio. The electronic and magnetic properties have revealed non-magnetic but metallic character of the compounds. The main contribution to density of states at the Fermi level stems from the comparable spectral intensity of Th (6d+5f) and (C+N) 2p states. In comparison with spin magnetic moments of ThSb and ThBi calculated earlier with LDA+U approach, we observed an enhancement in the spin magnetic moments after carbon-doping into ThN monopnictide.

Failure Criteria of a 6-Inch Carbon Steel Pipe Elbow According to Deformation Angle Measurement Positions (변형각의 측정 위치에 따른 6인치 탄소강관엘보의 파괴 기준)

  • Yun, Da Woon;Jeon, Bub Gyu;Chang, Sung Jin;Park, Dong Uk;Kim, Sung Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.13-22
    • /
    • 2022
  • This study proposes a low-cycle fatigue life derived from measurement points on pipe elbows, which are components that are vulnerable to seismic load in the interface piping systems of nuclear power plants that use seismic isolation systems. In order to quantitatively define limit states regarding leakage, i.e., actual failure caused by low-cycle fatigue, in-plane cyclic loading tests were performed using a sine wave of constant amplitude. The test specimens consisted of SCH40 6-inch carbon steel pipe elbows and straight pipes, and an image processing method was used to measure the nonlinear behavior of the test specimens. The leakage lines caused by low-cycle fatigue and the low-cycle fatigue curves were compared and analyzed using the relationship between the relative deformation angles, which were measured based on each of the measurement points on the straight pipe, and the moment, which was measured at the center of the pipe elbow. Damage indices based on the combination of ductility and dissipation energy at each measurement point were used to quantitatively express the time at which leakage occurs due to through-wall cracking in the pipe elbow.

Electronic properties of monolayer silicon carbide nanoribbons using tight-binding approach

  • Chuan, M.W.;Wong, Y.B.;Hamzah, A.;Alias, N.E.;Sultan, S. Mohamed;Lim, C.S.;Tan, M.L.P.
    • Advances in nano research
    • /
    • v.12 no.2
    • /
    • pp.213-221
    • /
    • 2022
  • Silicon carbide (SiC) is a binary carbon-silicon compound. In its two-dimensional form, monolayer SiC is composed of a monolayer carbon and silicon atoms constructed as a honeycomb lattice. SiC has recently been receiving increasing attention from researchers owing to its intriguing electronic properties. In this present work, SiC nanoribbons (SiCNRs) are modelled and simulated to obtain accurate electronic properties, which can further guide fabrication processes, through bandgap engineering. The primary objective of this work is to obtain the electronic properties of monolayer SiCNRs by applying numerical computation methods using nearest-neighbour tight-binding models. Hamiltonian operator discretization and approximation of plane wave are assumed for the models and simulation by applying the basis function. The computed electronic properties include the band structures and density of states of monolayer SiCNRs of varying width. Furthermore, the properties are compared with those of graphene nanoribbons. The bandgap of ASiCNR as a function of width are also benchmarked with published DFT-GW and DFT-GGA data. Our nearest neighbour tight-binding (NNTB) model predicted data closer to the calculations based on the standard DFT-GGA and underestimated the bandgap values projected from DFT-GW, which takes in account the exchange-correlation energy of many-body effects.

Aperture Cut-off Filter for Reduction of Electromagnetic Field Penetration through a Slot in Conducting Screens (도체평판의 슬롯 침투 전자파 저감을 위한 개구면 차단필터)

  • Kim, Ki-Chai
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.12
    • /
    • pp.1201-1211
    • /
    • 2014
  • The purpose of this paper is to present the aperture cut-off filter for reduction of electromagnetic field penetration through a slot in conducting screen. The reduction characteristics of electric field penetration by the aperture cut-off filter are considered. In order to establish the concept of the aperture cut-off filter, the integral equation on the slot aperture field distribution is derived and solved by method of moments, and the reduction characteristics of penetration electric fields for the incident plane wave are calculated. The numerical results showed that the aperture cut-off filter for reduction of electric field penetration through the slot can be realized. To check the validity of the concept of an aperture cut-off filter and the theoretical analysis, the calculated electric field penetration of the metallic wall with narrow slot were compared with the experimental results.

A Study on Anisotropic Characteristics of Sedimentary Rocks(Taegu area) (퇴적암의 비등방 특성에 관한 연구(대구지역))

  • Kim, Yeong-Su;Heo, No-Yeong;Seo, In-Sik
    • Geotechnical Engineering
    • /
    • v.14 no.4
    • /
    • pp.5-16
    • /
    • 1998
  • The ground of Taegu area consists mainly of shales with elastic sedimentary rocks. These shales have a nonhomogeneous and anisotropic characteristics. So their physical and mechanical properties are very different due to the angles($\beta$ value) of bedding planes of sedimentary rock. In this study, the physical and mechanical characteristics of shales in Taegu area are studied by performing all kinds of rock test. According to results of test, apparent specific gravity of shale decreases as the $\beta$ value increases. On the contrary, porosity and absorption increase. Elastic wave velocity shorts the highest value at the $90^{\circ}$. And Young's modulus shows the maximum value at the $30^{\circ}$. The uniaxial strength, triaxial strength, cohesion and angle of friction show the minimum value at the $60^{\circ}$respectively.

  • PDF

A study on the sound transmission through double plates installed inside an impedance tube (임피던스 튜브 내에 설치된 이중 평판의 음파투과연구)

  • Kim, Hyun-Sil;Kim, Bong-Ki;Kim, Sang-Ryul;Seo, Yun-Ho;Ma, Pyung-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.4
    • /
    • pp.253-260
    • /
    • 2016
  • In this paper, derivation of the STL (Sound Transmission Loss) of the double plates installed in an impedance tube is discussed using an analytic method, where an air cavity exists between the plates. Vibration of the plates and sound pressure field inside the tube are expressed in terms of infinite series of modal functions. Under the plane wave assumption, it is shown that consideration of the first few modes yields sufficiently accurate results, and locations of peaks and dips are investigated. It is determined that the peak frequencies of the double plates coincide with those of each single plate. When the two plates are identical, the STL of the double plates as well as that of the single plate become zero at the natural frequencies of the single plate. The location and amplitude of the dips are investigated using an approximation solution when the cavity depth is very small.