• Title/Summary/Keyword: In-plane Natural Vibration

Search Result 194, Processing Time 0.023 seconds

Torsional Vibration in Axisymmetric Out-of-plane Vibrations of an Annular Mindlin Plate (환상 민들린 평판의 축대칭 면외 진동에서의 비틀림 진동)

  • Kim, Chang-Boo;Lim, Jung-Ki
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.13-17
    • /
    • 2010
  • This presentation examines the characteristics of torsional vibration in axisymmetric out-of-plane vibrations of an annular Mindin plate. The out-of-plane vibration of circular or annular plates have been investigated since a long years ago by many researchers. When the classical Kirchhoff plate theory neglecting the effect of transverse shear deformation is applied to a thick plate, its out-of-plane natural frequencies are much different from reality. And so, since Minlin presented a plate theory considering the effect of rotary inertia and transverse shear deformation, many researches for the out-of-plane natural vibration of circular or annular Mindin plates have been performed. But almost all researchers missed the torsional vibration due to transverse shear deformation in axisymmetric out-of-plane vibrations of the circular or annular Mindin plate. Therefore, in this presentation, we verify the existence of torsional vibration of an annular plate and present the natural frequencies of an annular plate with free outer boundary surface.

  • PDF

Vibration Analysis of an Axially Moving Membrane with In-plane/Out-of-plane Deformations (면내/면외변형을 고려한 이송되는 박막의 진동해석)

  • Shin Changho;Chung Jintai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.910-918
    • /
    • 2004
  • The vibration analysis of an axially moving membrane are investigated when the membrane has the two sets of in-plane boundary conditions, which are free and fixed constraints in the lateral direction. Since the in-plane stiffness is much higher than the out-of-plane stiffness, it is assumed during deriving the equations of motion that the in-plane motion is in a steady state. Under this assumption, the equation of out-of-plane motion is derived, which is a linear partial differential equation influenced by the in-plane stress distributions. After discretizing the equation by using the Galerkin method, the natural frequencies and mode shapes are computed. In particular, we put a focus on analyzing the effects of the in-plane boundary conditions on the natural frequencies and mode shapes of the moving membrane.

Vibration Analysis of an Axially Moving Membrane with In-Plane/out-of-Plane Deformations (면내/면외변형을 고려한 이송되는 박막의 진동해석)

  • 신창호;정진태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.164-168
    • /
    • 2004
  • The vibration analysis of an axially moving membrane are investigated when the membrane has the two sets of in-plane boundary conditions, which are free and fixed constraints in the lateral direction. Since the in-plane stiffness is much higher than the out-of-plane stiffness, it is assumed during deriving the equations of motion that the in-plane motion is in a steady state. Under this assumption. the equation of out-of\ulcornerplane motion is derived, which is a linear partial differential equation influenced by the in-plane stress distributions. After discretizing the equation by using the Galerkin method, the natural frequencies and mode shapes are computed. In particular, we put a focus on analyzing the effects of the in-plane boundary conditions on the natural frequencies and mode shapes of the moving membrane.

  • PDF

In-plane Vibration Analysis for an Axially Moving Membrane (축방향으로 움직이는 박막의 면내 진동해석)

  • 정진태;신창호;김원석
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.3
    • /
    • pp.221-227
    • /
    • 2002
  • The longitudinal and lateral in-plane vibrations of an axially moving membrane are investigated when the membrane has translating acceleration. By extended Hamilton's principle, the governing equations are derived. The equations of motion for the in-plane vibrations are linear and coupled. These equations are discretized by using the Galerkin approximation method after they are transformed into the variational equations, j.e., the weak forms so that the admissible functions can be used for the bases of the in-plane deflections. With the discretized equations for the in-plane vibrations, the natural frequencies and the time histories of the deflections are obtained.

Natural Vibration Analysis of Thick Rings (두꺼운 링의 고유진동 해석)

  • Park, Jung-Woo;Kim, Sehee;Kim, Chang-Boo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.10 s.103
    • /
    • pp.1186-1194
    • /
    • 2005
  • In this paper, we have systematically formulated the equations concerned to the in-plane and out-of-plane motions and deformations of a thick circular beam by using the kinetic and strain energies in order to analyse natural frequencies of a thick ring. The effects of variation of radius of curvature across the cross-section and also the effects of bending shear, extension and twist are considered. The equations of motion for natural vibration analysis of a ring are obtained utilizing the cyclic symmetry of vibration modes of the ring. The frequencies calculated using thick ring model and thin ring model are compared and discussed with the ones obtained from finite element analysis using the method of cyclic symmetry with 20-node hexahedral solid elements for rings with the different ratio of radial thickness to mean radius.

Vibration Characteristics of a Semi-circular Pipe Conveying Fluid with Both Ends Clamped (유체를 이송하는 양단 고정된 반원관의 면내/면외 진동 특성)

  • 정두한;정진태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.252-257
    • /
    • 2004
  • Free vibration of a semi-circular pipe conveying fluid is analyzed when the pipe is clamped at both ends. To consider the geometric non-linearity, this study adopts the Lagrange strain theory and the extensibility of the pipe. By using the extended Hamilton principle, the non-linear partial differential equations are derived, which are coupled to the in-plane and out-of\ulcornerplant: motions. To investigate the vibration characteristics of the system, the discretized equations of motion are derived from the Galerkin method. The natural frequencies are computed from the linearized equations of motion in the neighborhood of the equilibrium position. From the results. the natural frequencies for the in-plane and out-of-plane motions are vary with the flow velocity. However, no instability occurs the semi-circular pipe with both ends clamped, when taking into account the geometric non-linearity explained by the Lagrange strain theory.

  • PDF

Dynamics of a Micro Three-Axis Ring Gyroscope (마이크로 3축 링 자이로스코프의 동역학)

  • Choi, Sang-Hyun;Kim, Chang-Boo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.37-43
    • /
    • 2002
  • In this paper, we analyse and present mechanical dynamic characteristics of a micro-machined vibrating silicon ring gyroscope which can measure angular velocities about three orthogonal axes. The ring gyroscope has a ring connected to the gyroscope main body by support-ligaments which are arranged with cyclic symmetry. The natural modes of its vibration can be distinguished into the in-plane motion and the out-of-plane motion which are coupled by the gyro-effect due to the rotation of the gyroscope main body. The equations of motion, the response to angular velocities, and the relationships between the natural modes of vibration are derived and compared with the previous studies for the design of a micro three-axis ring gyroscope.

  • PDF

Dynamics of a Micro Three-axis Ring Gyroscope (마이크로 3축 링 자이로스코프의 동역학)

  • Kim, Chang-Boo;Choi, Sang-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.12
    • /
    • pp.1001-1009
    • /
    • 2002
  • In this paper, we analyse and present mechanical dynamic characteristics of a micro-machined vibrating silicon ring gyroscope which can measure angular velocities about three orthogonal axes. The ring gyroscope has a ring connected to the gyroscope main body by support-ligaments which are arranged with cyclic symmetry. The natural modes of its vibration can be distinguished into the in-plane motion and the out-of-plane motion which are coupled by the gyro-effect due to the rotation of the gyroscope main body. The equations of motion, the response to angular velocities, and the relationships between the natural modes of vibration are derived and compared with the previous studies for the design of a micro three-axis ring gyroscope.

In-plane Natural Vibration Analysis of a Rotating Annular Disk (회전하는 환상 디스크의 면내 고유진동 해석)

  • Song, Seung-Gwan;Kwak, Dong-Hee;Kim, Chang-Boo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.2
    • /
    • pp.208-216
    • /
    • 2009
  • In this paper, we present the equations of motion by which the natural vibration of a rotating annular disk can be analyzed accurately. These equations are derived from the theory of finite deformation and the principle of virtual work. The radial displacements of annular disk at the steady state where the disk is rotating at a constant angular velocity are determined by non-linear static equations formulated with 1-dimensional finite elements in radial direction. The linearlized equations of the in-plane vibrations at the disturbed state are also formulated with 1-dimensional finite elements in radial direction along the number of nodal diameters. They are expressed as in functions of the radial displacements at the steady state and the disturbed displacements about the steady state. In-plane static deformation modes of an annular disk are used as the displacement functions for the interpolation functions of the 1-dimensional finite elements. The natural vibrations of an annular disk with different boundary conditions are analyzed by using the presented model and the 3-dimensional finite element model to verify accuracy of the presented equations of motion. Its results are compared and discussed.

Comparison of the Natural Period Obtained by Eigenvalue Analysis and Ambient Vibration Measurement in Bearing-Wall Type Apartment (고유치해석과 진동계측을 통한 벽식 공동주택의 고유주기 비교)

  • Yoon, Sung-Won;Jeong, Sug-Chang;Lim, In-Sik
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.43-50
    • /
    • 2006
  • This paper is concerned with the natural periods of ambient vibration and eigenvalue analysis. Ambient vibration tests were conducted to four bearing-wall reinforced concrete buildings ranging from twelve to nineteen stories. The performance of modeling in eigenvalue analysis was investigated using consideration of rigidity out of the plane in the slab and the non-structural bearing wall. Measured natural period was also compared with the value by the KBC2005. Natural period of the short direction in eigenvalue analysis is well fitted with the measured one. In the other hand, Natural period of the long direction in eigenvalue analysis is slightly more overestimated than the measured one. Natural period of the long direction in eigenvalue analysis was found to be enhanced by considering the effect of the stiffness out of the plane of the slab and non-structural wall in the structural modeling.

  • PDF