• Title/Summary/Keyword: In-plane Loading

Search Result 581, Processing Time 0.028 seconds

Investigation on the Experimental Results of Anisotropic Fracture Behavior for UHSS 1470 MPa Grade Sheets (초고강도 1470 MPa급 판재의 파단 이방성 실험 결과에 관한 연구)

  • J. Lee;H. J. Bong;D. Kim
    • Transactions of Materials Processing
    • /
    • v.32 no.2
    • /
    • pp.87-91
    • /
    • 2023
  • In the present work, the ductile fracture behaviors of ultra-high strength steel sheets along the different loading directions are investigated under various loading paths. Three loading paths, i.e., in-plane shear, uniaxial tension, plane strain tension deformations, are considered, and the corresponding specimens are described. The experiments are conducted using the digital image correlation (DIC) system to analyze the strain at the onset of the fracture. The experimental results show that the loading path for each specimen sample is linear, and different values of the fracture strains for the loading direction from the plane strain tension are observed. The ductile fracture model of the modified Mohr-Coulomb (MMC) is constructed based on the experimental data and evaluated along the rolling direction and transverse direction under various loading paths.

Effect of Fiber Volume Fraction on the Stress Intensity Factors for Multi Layered Composites Under Arbitrary Anti-Plane Shear Loading

  • Kim, Sung-Ho;Lee, Kang-Yong;Joo, Sung-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.9
    • /
    • pp.920-927
    • /
    • 2000
  • A multi-layered orthotropic material with a center crack is subjected to an anti-plane shear loading. The problem is formulated as a mixed boundary value problem by using the Fourier integral transform method. This gives a Fredholm integral equation of the second kind. The integral equation is solved numerically and anti-plane shear stress intensity factors are analyzed in terms of the material orthotropy for each layer, number of layers, crack length to layer thickness and the order of the loading polynomial. Also, the case of monolithic and hybrid composites are investigated in terms of the local fiber volume fraction and the global fiber volume fraction.

  • PDF

Blast behavior of steel infill panels with various thickness and stiffener arrangement

  • Lotfi, Saeid;Zahrai, Seyed Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.587-600
    • /
    • 2018
  • Infill panel is the first element of a building subjected to blast loading activating its out-of-plane behavior. If the infill panel does not have enough ductility against the loading, it breaks and gets damaged before load transfer and energy dissipation. As steel infill panel has appropriate ductility before fracture, it can be used as an alternative to typical infill panels under blast loading. Also, it plays a pivotal role in maintaining sensitive main parts against blast loading. Concerning enough ductility of the infill panel out-of-plane behavior, the impact force enters the horizontal diaphragm and is distributed among the lateral elements. This article investigates the behavior of steel infill panels with different thicknesses and stiffeners. In order to precisely study steel infill panels, different ranges of blast loading are used and maximum displacement of steel infill under such various blast loading is studied. In this research, finite element analyses including geometric and material nonlinearities are used for optimization of the steel plate thickness and stiffener arrangement to obtain more efficient design for its better out-of-plane behavior. The results indicate that this type of infill with out-of-plane behavior shows a proper ductility especially in severe blast loadings. In the blasts with high intensity, maximum displacement of infill is more sensitive to change in the thickness of plate rather the change in number of stiffeners such that increasing the number of stiffeners and the plate thickness of infill panel would decrease energy dissipation by 20 and 77% respectively. The ductile behavior of steel infill panels shows that using infill panels with less thickness has more effect on energy dissipation. According to this study, the infill panel with 5 mm thickness works better if the criterion of steel infill panel design is the reduction of transmitted impulse to main structure. For example in steel infill panels with 5 stiffeners and blast loading with the reflected pressure of 375 kPa and duration of 50 milliseconds, the transmitted impulse has decreased from 41206 N.Sec in 20 mm infill to 37898 N.Sec in 5 mm infill panel.

Computational evaluation of experimental methodologies of out-of-plane behavior of framed-walls with openings

  • Anic, Filip;Penava, Davorin;Abrahamczyk, Lars;Sarhosis, Vasilis
    • Earthquakes and Structures
    • /
    • v.16 no.3
    • /
    • pp.265-277
    • /
    • 2019
  • Framed masonry wall structures represent a typical high-rise structural system that are also seismically vulnerable. During ground motions, they are excited in both in-plane and out-of-plane terms. The interaction between the frame and the infill during ground motion is a highly investigated phenomenon in the field of seismic engineering. This paper presents a numerical investigation of two distinct static out-of-plane loading methods for framed masonry wall models. The first and most common method is uniformly loaded infill. The load is generally induced by the airbag. The other method is similar to in-plane push-over method, involves loading of the frame directly, not the infill. Consequently, different openings with the same areas and various placements were examined. The numerical model is based on calibrated in-plane bare frame models and on calibrated wall models subjected to OoP bending. Both methods produced widely divergent results in terms of load bearing capabilities, failure modes, damage states etc. Summarily, uniform load on the panel causes more damage to the infill than to the frame; openings do influence structures behavior; three hinged arching action is developed; and greater resistance and deformations are obtained in comparison to the frame loading method. Loading the frame causes the infill to bear significantly greater damage than the infill; infill and openings only influence the behavior after reaching the peak load; infill does not influence initial stiffness; models with opening fail at same inter-storey drift ratio as the bare frame model.

In-plane buckling strength of fixed arch ribs subjected vertical distributed loading (수직 등분포 하중을 받는 고정 지점 포물선 아치 리브의 면내 좌굴 강도)

  • Moon, Ji Ho;Yoon, Ki Yong;Kim, Sung Hoon;Lee, Hak Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.439-447
    • /
    • 2005
  • When arch ribs are subjected to vertical loading, they may buckle suddenly towards the in-plane direction. Therefore, the designer should consider their in-plane stability. In this paper, the in-plane elastic and inelastic buckling strength of parabolic, fixed arch ribs subjected to vertical distributed loading were investigated using the finite element method. A finite element model for the snap-through and inelastic behavior of arch ribs was verified using other researchers' test results. The ultimate strength of arch ribs was determined by taking into account their large deformation, material inelasticity, and residual stress. Finally, the finite element analysis results were compared with the EC3 design code.

Inelastic Out-of-plane Design of Parabolic Arches

  • Moon, Jiho
    • International Journal of Railway
    • /
    • v.8 no.2
    • /
    • pp.46-49
    • /
    • 2015
  • In this paper, improved out-of-plane design of parabolic arches was proposed based on the current design code. The arches resist general loading by a combination of axial compression and bending actions, and the interaction formula between two extreme cases of axial and bending actions is generally used for the design. Firstly, the out-of-plane buckling strength of arches in a pure axial compression and a pure bending were studied. Then, out-of-plane design of parabolic aches under general transverse loading was investigated. From the results, it can be found that the proposed design equations provided good prediction of out-of-plane strength for parabolic arches which satisfy the thresholds for deep arches, while proposed design equations overestimated the buckling load of shallow arches.

Enhancement of in-plane load-bearing capacity of masonry walls by using interlocking units

  • Kayaalp, Fatma Birinci;Husem, Metin
    • Earthquakes and Structures
    • /
    • v.22 no.5
    • /
    • pp.475-485
    • /
    • 2022
  • This paper presents a comparative experimental study on structural behavior of the interlocking masonry walls under in-plane cyclic loading. The main purpose of this study is to increase lateral load-bearing capacities of masonry walls by using interlocking units. The interlocking units were designed by considering failure modes of masonry walls and produced using lightweight foamed concrete. To this end, three masonry walls which are hollow, fully grouted, and reinforced were constructed with interlocking units. Also, a traditional masonry brick wall was built for comparison reasons. The walls were tested under in-plane cyclic loading. Then, structural parameters of the walls such as lateral load bearing and total energy dissipation capacities, ductility, stiffness degradation as well as failure modes obtained from the tests were compared with each other. The results have shown that the walls with the interlocking units have better structural performance than traditional masonry brick walls and they may be used in the construction of low-rise masonry structures in rural areas to improve in-plane structural performance.

Impact force and acoustic analysis on composite plates with in-plane loading (면내하중을 받는 복합적층판에 대한 충격하중 및 음향 해석)

  • Kim, Sung-Joon;Park, Ill-Kyung;Ahn, Seok-Min
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.244-249
    • /
    • 2011
  • The potential hazards resulting from a low-velocity impact (bird-strike, tool drop, runway debris, etc.) on aircraft structures, such as engine nacelle or a leading edges, has been a long-term concern to the aircraft industry. Certification authorities require that exposed aircraft components must be tested to prove their capability to withstand low-velocity impact without suffering critical damage. In most of the past research studies unloaded specimens have been used for impact tests, however, in reality it is much more likely that a composite structure is exposed to a certain stress state when it is being impacted, which can have a significant effect on the impact performance. And the radiated impact sound induced by impact is analyzed for the damage detection evaluation. In this study, an investigation was undertaken to evaluate the effect in-plane loading on the impact force and sound of composite laminates numerically.

  • PDF

Parallel Crack in Bonded Dissimilar Orthotropic Planes Under Out-of-Plane Loading (면외하중을 받는 상이한 직교 이방성 평면내의 평행균열)

  • 최성렬;권용수;채영석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.170-180
    • /
    • 1995
  • A parallel crack in bonded dissimilar orthotropic planes under out-of-plane loading is analyzed. The problem is formulated by Fourier integral transforms, and reduced to a pair of dual integral equations. By solving the integral equations, the asymptotic stress and displacement fields near the crack tip are determined in closed form, from which the stress intensity factor and energy release rate are obtained. Discontinuity in the stress intensity factor as the distance ratio h/a of the parallel crack approaches zero is found, while the energy releas rate is shown to be continuous at h/a = 0. This information can immediately be used to generate the stress intensity factor for the parallel crack near the interface. By employing "the maximum energy release rate criterion", it could be shown in the case of no existing crack initially that the parallel crack is formed far from the interface for the more compliant material, while it is formed close to the interface for the stiffer material. material.

스테인레스강 저주기 피로 수명 분포의 추계적 모델링

  • 이봉훈;이순복
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2000.04a
    • /
    • pp.213-222
    • /
    • 2000
  • In present study, a stochastic model is developed for the low cycle fatigue life prediction and reliability assessment of 316L stainless steel under variable multiaxial loading. In the proposed model, fatigue phenomenon is considered as a Markov process, and damage vector and reliability are defined on every plane. Any low cycle fatigue damage evaluating method can be included in the proposed model. The model enables calculation of statistical reliability and crack initiation direction under variable multiaxial loading, which are generally not available. In present study, a critical plane method proposed by Kandil et al., maximum tensile strain range, and von Mises equivalent strain range are used to calculate fatigue damage. When the critical plane method is chosen, the effect of multiple critical planes is also included in the proposed model. Maximum tensile strain and von Mises strain methods are used for the demonstration of the generality of the proposed model. The material properties and the stochastic model parameters are obtained from uniaxial tests only. The stochastic model made of the parameters obtained from the uniaxial tests is applied to the life prediction and reliability assessment of 316L stainless steel under variable multiaxial loading. The predicted results show good accordance with experimental results.

  • PDF