• Title/Summary/Keyword: In-motion alignment

Search Result 162, Processing Time 0.021 seconds

Mask-Panel Alignment Robot System Using a Parallel Mechanism with Actuation Redundancy (여유 구동 병렬기구를 이용한 마스크-패널 얼라인 로붓 시스템)

  • Jeong, Hae-Min;Kwon, Sang-Joo;Lee, Sang-Moo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.9
    • /
    • pp.887-893
    • /
    • 2009
  • In this paper, a mask-panel alignment robot system is considered for IT industry applications. Two kinds of solutions are suggested which are required in constructing a control system for the alignment robot with actuation redundancy. First, the kinematic solution for the 4PPR parallel positioning mechanism is formulated for an arbitrary initial posture, which relates the mask-panel misalignment in the task space and the desired actuator displacements in the joint space. Secondly, in order to increase the stiffness of the control motion and also to avoid the mechanical lock which may happen due to the redundant actuation, a new synchronous control method is proposed which has the merit of coordinating joint control motions while not losing individual joint control performance. In addition, the engineering process to develop a visual alignment robot system is described with the results of experimental setup and GUI software. Finally, the experimental results demonstrate the effectiveness of the proposed alignment system control methodology and how much beneficial it will be in real industrial applications.

A Study on the Development of the Rotary Stage for Multi-Channel Optical Alignment System (다채널 광정렬 장치 로터리 스테이지 개발에 관한 연구)

  • 정상화;차경래
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.143-148
    • /
    • 2003
  • In recent years, as the optical Communication systems are developed, the demands of essential parts such as splitter, coupler, WDM, and AWG filter are grow rapidly. The fabrication process for them is not, however, automatic. On that reason, the automation is needed for the grow of productivity. The optical alignment and attach ment is the core process in fabrication. In this paper, the 6-axis rotary stage for multi-channel optical alignment system is developed and the dynamic characteristic of this system is studied.

  • PDF

Development of Automatic Optical Fiber Alignment System and Optimal Aligning Algorithm (자동 광 정렬시스템 및 최적 광 정렬알고리즘의 개발)

  • Um, Chul;Kim, Byung-Hee;Choi, Young-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.194-201
    • /
    • 2004
  • Optical fibers are indispensable fer optical communication systems that transmit large volumes of data at high speed. But the aligning technology under the sub-micron accuracy is required for the precise axis adjustment and connection. For the purpose of precise alignment of the optical arrays, in this research, we have developed the 12-axis(with 8 automated axis and 4 manual axis) automatic optical fiber alignment system including the image processing-based searching system, the automatic loading system using the robot and the suction toot and the automatic UV bonding system. In order to obtain the sub-micron alignment accuracy, two 4-axis PC-based motion controllers and the two 50nm resolution 6-aixs micro-stage actuated by micro stepping motors are adopted. The fiber aligning procedure consists of two steps. Firstly, the optical wave guide and an input optical array are aligned by the 6-axis input micro-stage with the IR camera. The image processing technique is introduced to reduce primary manual aligning time and result in achieving the 50% decrease of aligning time. Secondly, the IR camera is replaced by the output micro-stage and a wave guide and two optical arrays are aligned simultaneously before the laser power intensity delivered to the optical powermeter reached the threshold value. When the aligning procedure is finished, the wave guide and arrays are W bonded. The automatic loading/unloading system is also introduced and the entire wave guide handing time is reduced significantly compared to the former commercial aligning system.

A Study on the Motion Mechanism of Multi-Axis Ultra Precision Stage for Optical Element Alignment (광소자 정렬용 극초정밀 다축 스테이지의 구동 메커니즘에 관한 연구)

  • Jeong Sang-hwa;Kim Gwang-ho;Cha Kyoung-rae;Lee Kyoung-hyoung;Song Suk
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.8-16
    • /
    • 2006
  • The communication through optical fiber is taking an important role of the expansion of communication network with excellent transmitting rate and quality. As the optical communication is introduced to the backbone network at first and becomes a general communication method of network, the demand of kernel parts of optical communication such as PLC(Planar Light Circuit), Coupler, and WDM(Wavelength Division Multiplexing) element increases. The alignment and the attachment technology are very important in the fabrication of optical elements. In this paper, the driving mechanism of ultra precision stage is studied with the aim of optimal design of stage. The travel and the resolution of stage are investigated. The hysteresis of the stage is generated because of PZT actuator. The hysteresis and the inverse hysteresis are modeled in X, Y, and Z-axis motion. The input data of desired displacement of the stage according to input voltage is obtained from the inverse hysteresis equation. In the result of experiments with the input data, the errors due to hysteresis are well compensated.

A Study on The Motion Charateristic of Ultra Precision Multi-Axis Stage for Optical Element Alignment (광소자 정렬용 극초정밀 다축 위치 조정장치의 운동특성에 관한 연구)

  • Jeong S.H.;Cha K.R.;Kim H.U.;Choi S.B.;Kim G.H.;Park J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1219-1222
    • /
    • 2005
  • As the optical communication is introduced to the backbone network at first and becomes a general communication method of network, the demand of kernel parts of optical communication such as PLC(Planar Light Circuit), Coupler, and WDM(Wavelength Division Multiplexing) element increases. The alignment and the attachment technology are very important in the fabrication of optical elements. In this paper, the driving mechanism of ultra precision stage is studied with the aim of optimal design of stage. The travel and the resolution of stage are investigated. The hysteresis of the stage is generated because of PZT actuator. The hysteresis and the inverse hysteresis are modeled in X, Y, and Z-axis motion. The input data of desired displacement to the stage according to input voltage is obtained from the inverse hysteresis equation. In the result of experiments with the input data, the errors due to hysteresis are well compensated.

  • PDF

A Study on the Motion Characteristics of Ultra Precision Optical Element Alignment Stage (초정밀 광소자 정렬 스테이지의 구동 특성에 관한 연구)

  • Jeong Sanghwa;Cha Kyoungrae;Kim Hyunuk;Choi Sukbong;Kim Gwangho;Park Juneho
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.81-86
    • /
    • 2005
  • As the optical communication is introduced to the backbone network at first and becomes a general communication method of network, the demand of kernel parts of optical communication such as PLC(Planar Light Circuit), Coupler, and WDM(Wavelength Division Multiplexing) element increases. The alignment and the attachment technology are very important in the fabrication of optical elements. In this paper, the driving mechanism of ultra precision stage is studied with the aim of optimal design of stage. The travel and the resolution of stage are investigated. The hysteresis of the stage is generated because of PZT actuator. The hysteresis and the inverse hysteresis are modeled in X, Y, and Z-axis motion. The input data of desired displacement to the stage according to input voltage is obtained from the inverse hysteresis equation. In the result of experiments with the input data, the errors due to hysteresis are well compensated.

  • PDF

A Study on the Mechanism of Rotational Stage with Multi Degree of Freedom for Multi-Channel Optical Alignment System (다채널 광정렬 장치에서의 다자유도 회전 스테이지 동작 특성에 관한 연구)

  • 정상화;차경래;최석봉;김광호;박준호;이경형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.219-224
    • /
    • 2004
  • In recent years, as the demands of VBNS(Very high speed Backbone Network Service) and VDSL(Very high-data rate Digital Subscriber Line) increase, the development of kernel parts of optical communication such as PLC(Planar Light Circuit), Coupler, WDM elements increase. The alignment and the attachment technology are very important to fabricate the optical elements for communication. In this paper, the mechanism of rotational stage, the contact sensing unit, and integrated control circuit for the optical alignment system are studied.

  • PDF

ISAR Motion Compensation based on Accumulation and Limitation of Consecutive Radar Returns

  • Seo, Dong-Shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.10B
    • /
    • pp.1803-1812
    • /
    • 2000
  • A new motion compensation method for ISAR is presented in this paper. It employs amplitude limiting and integration of consecutive range profiles to improve the range and phase alignment accuracy and to alter the propagation properties of compensation errors. These allow the image quality to be significantly improved. It is shown from the imaging results that the new motion compensation algorithm can get images of targets in field situations with much better quality than the traditional cross-correlation algorithm.

  • PDF

Design of Transfer Alignment Algorithm with Velocity and Azimuth Matching for the Aircraft Having Wing Flexibility (유연성을 가지는 비행체를 위한 속도/방위각 정합 전달 정렬 알고리즘 설계)

  • Suktae Kang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.214-226
    • /
    • 2023
  • A transfer alignment is used to initialize, align, and calibrate a SINS(Slave INS) using a MINS(Master INS) in motion. This paper presents an airborne transfer alignment with velocity and azimuth matching to estimate inertial sensor biases under the wing flexure influence. This study also considers the lever arm, time delay and relative orientation between MINS and SINS. The traditional transfer alignment only uses velocity matching. In contrast, this paper utilizes the azimuth matching to prevent divergence of the azimuth when the aircraft is stationary or quasi-stationary since the azimuth is less affected by the wing flexibility. The performance of the proposed Kalman filter is analyzed using two factors; one is the estimation performance of gyroscope and accelerometer bias and the other is comparing aircraft dynamics and attitude covariance. The performance of the proposed filter is verified using a long term flight test. The test results show that the proposed scheme can be effectively applied to various platforms that require airborne transfer alignment.

The Sagittal Balance of Cervical Spine : Comprehensive Review of Recent Update

  • Sang Hoon Lee;Tae Hwan Kim;Seok Woo Kim;Hyun Take Rim;Heui Seung Lee;Ji Hee Kim;In Bok Chang;Joon Ho Song;Yong Kil Hong;Jae Keun Oh
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.6
    • /
    • pp.611-617
    • /
    • 2023
  • The cervical spine plays a critical role in supporting the skull, maintaining horizontal gaze, and facilitating walking. Its unique characteristics, including the widest range of motion among spinal segments, have led to extensive research on cervical sagittal alignment. Various parameters have been proposed to evaluate cervical alignment, with studies investigating their clinical significance, correlation with symptoms, and implications for surgical interventions. Recent findings suggest that cervical sagittal alignment not only impacts the cervical spine but also influences global spine-pelvic alignment through compensatory mechanisms. This comprehensive review examines classical and new parameters of cervical sagittal alignment and considers the dynamic and muscular factors associated with it.