• Title/Summary/Keyword: In-folding Structure

Search Result 208, Processing Time 0.026 seconds

A Study on the Concept of Topological Space shown Folding in Architecture (접힘 건축에 나타난 위상기하학적 공간 개념에 관한 연구)

  • 황태주
    • Korean Institute of Interior Design Journal
    • /
    • v.13 no.3
    • /
    • pp.69-75
    • /
    • 2004
  • Since 1990s, several rising western architects have been moving their theoretical background from the modern paradigm to new science and philosophy. Architectural spaces are based on the philosophy and science of their own age and the architectural theories made by them. And specially, it seems that topological spaces are different to theoretical backgrounds from idealized spaces of modern architecture. From these backgrounds, this study was performed to search for the spacial relationship and characteristics shown in the recently folding architecture and the results of this study that starts this purpose are as follows. First, the architecture that introduced by the theory of topology has appeared as the circulation forms like as Mobius band or Klein bottle, and was made the space fused with structure pursuing liquid properties of matter. As follows, second, the concept of topological space made the division of traditional concept of floor, wall, ceiling disappeared and had built up the space by continual transformation. Third, about the relationship between two spaces in topological space, the two spaces were happened by transformation of these and they have always continuity and the same quality.

Conformational Studies of Gaseous Proteins Using Mass Spectrometry

  • Oh, Han-Bin
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.27-27
    • /
    • 2003
  • Conformations of the +5 to +13 charge state of ubiquitin ions have been studied in the gas phase by an Electron Capture Dissociation (ECD) mass spectrometry (MS) technique. This approach has showed that the conformations of the gaseous ions change from the compact to extended structures as the number of protons on the protein ions increases, consistent with previous collisional cross-section measurements by an ion-mobility MS. However, this observation is in contrast to that of the solution-phase where the unique native structure is usually found. The (un)folding stability and kinetics of these gaseous ions were further investigated experimentally using gradual blackbody-radiation or sudden laser-induced thermal heating, respectively. These studies have provided the evidence that the thermodynamics and kinetics of protein (un)folding in the gas phase are quite different from those of the native aqueous proteins.

  • PDF

A 250MS/s 8 Bit CMOS folding and Interpolating AD Converter with 2 Stage Architecture (2단 구조를 사용한 250MS/s 8비트 CMOS 폴딩-인터폴레이팅 AD 변환기)

  • 이돈섭;곽계달
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.4
    • /
    • pp.826-832
    • /
    • 2004
  • A CMOS 8 bit folding and interpolating ADC for an embedded system inside VLSI is presented in this paper. This folding ADC uses the 2 stage architecture for improving of nonlinearity. repeating the folding and interpolating twice. At a proposed structure, a transistor differential pair operates on the second folder. A ADC with 2 stage architecture reduces the number of comparators and resisters. So it is possible to provide small chip size, low power consumption and high operating speed. The design technology is based on fully standard 0.25m double-Poly 2 metal n-well CMOS Process. The simulated Power consumption is 45mW with an applied voltage of 2.5V and sampling frequency of 250MHz. The INL and DNL are within <ㅆㄸㅌ>$\pm$0.2LSB, respectively. The SNDR is approximately 45dB for input frequency of 10MHz.

A Modeling Study of Co-transcriptional Metabolism of hnRNP Using FMR1 Gene

  • Ro-Choi, Tae Suk;Choi, Yong Chun
    • Molecules and Cells
    • /
    • v.23 no.2
    • /
    • pp.228-238
    • /
    • 2007
  • Since molecular structure of hnRNP is not available in foreseeable future, it is best to construct a working model for hnRNP structure. A geometric problem, assembly of $700{\pm}20$ nucleotides with 48 proteins, is visualized by a frame work in which all the proteins participate in primary binding, followed by secondary, tertiary and quaternary binding with neighboring proteins without additional import. Thus, 40S hnRNP contains crown-like secondary structure (48 stemloops) and appearance of 6 petal (octamers) rose-like architectures. The proteins are wrapped by RNA. Co-transcriptional folding for RNP fibril of FMR1 gene can produce 2,571 stem-loops with frequency of 1 stem-loop/15.3 nucleotides and 53 40S hnRNP beaded structure. By spliceosome driven reactions, there occurs removal of 16 separate lariated RNPs, joining 17 separate beaded exonic structures and anchoring EJC on each exon junction. Skipping exon 12 has 5'GU, 3'AG and very compact folding pattern with frequency of 1 stem-loop per 12 nucleotides in short exon length (63 nucleotides). 5' end of exon 12 contains SS (Splicing Silencer) element of UAGGU. In exons 10, 15 and 17 where both regular and alternative splice sites exist, SS (hnRNP A1 binding site) is observed at the regular splicing site. End products are mature FMR-1 mRNP, 4 species of Pri-microRNAs derived from introns 7,9,15 and 3'UTR of exon17, respectively. There may also be some other regulatory RNAs containing ALU/Line elements as well.

Putative Secondary Structure of Human Hepatitis B Viral X mRNA

  • Kim, Ha-Dong;Choi, Yoon-Chul;Lee, Bum-Yong;Junn, Eun-Sung;Ahn, Jeong-Keun;Kang, Chang-Won;Park, In-Won
    • BMB Reports
    • /
    • v.28 no.6
    • /
    • pp.509-514
    • /
    • 1995
  • A putative secondary structure of the mRNA for the human hepatitis B virus (HBV) X gene is proposed based on not only chemical and enzymatic determination of its single- and double-stranded regions but also selection by the computer program MFOLD for energy minimum conformation under the constraints that the experimentally determined nucleotides were forced or prohibited to base pair. An RNA of 536 nucleotides including the 461-nucleotide HBV X mRNA sequence was synthesized in vitro by the phage T7 RNA polymerase transcription. The thermally renatured transcripts were subjected to chemical modifications with dimethylsulfate and kethoxal and enzymatic hydrolysis with single strand-specific RNase T1 and double strand-specific RNase V1, separately. The sites of modification and cleavage were detected by reverse transcriptase extension of 4 different primers. Many nucleotides could be assigned with high confidence, twenty in double-stranded and thirty-seven in Single-stranded regions. These nucleotides were forced and prohibited, respectively, to base pair in running the recursive RNA folding program MFOLD. The results suggest that 6 different regions (5 within X mRNA) of 14~23 nucleotides are Single-stranded. This putative structure provides a good working model and suggests potential target sites for antisense and ribozyme inhibitors and hybridization probes for the HBV X mRNA.

  • PDF

Understanding Enzyme Structure and Function in Terms of the Shifting Specificity Model

  • Britt, Billy Mark
    • BMB Reports
    • /
    • v.37 no.4
    • /
    • pp.394-401
    • /
    • 2004
  • The purpose of this paper is to suggest that the prominence of Haldane's explanation for enzyme catalysis significantly hinders investigations in understanding enzyme structure and function. This occurs despite the existence of much evidence that the Haldane model cannot embrace. Some of the evidence, in fact, disproves the model. A brief history of the explanation of enzyme catalysis is presented. The currently accepted view of enzyme catalysis -- the Haldane model -- is examined in terms of its strengths and weaknesses. An alternate model for general enzyme catalysis (the Shifting Specificity model) is reintroduced and an assessment of why it may be superior to the Haldane model is presented. Finally, it is proposed that a re-examination of many current aspects in enzyme structure and function (specifically, protein folding, x-ray and NMR structure analyses, enzyme stability curves, enzyme mimics, catalytic antibodies, and the loose packing of enzyme folded forms) in terms of the new model may offer crucial insights.

Purification and Characterization of 2,3-Dihydroxybiphenyl 1,2- Dioxygenase from Comamonas sp.

  • Lee Na Ri;Kwon Dae Young;Min Kyung Hee
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2001.11a
    • /
    • pp.16-25
    • /
    • 2001
  • A genomic library of biphenyl-degrading strain Comamonas sp. SMN4 was constructed by using the cosmid vector pWE15 and introduced into Escherichia coli. Of 1,000 recombinant clones tested, two clones that expressed 2,3-dihydroxybiphenyl 1,2-dioxygenase activity were found (named pNB 1 and pNB2). From pNB1 clone, subclone pNA210, demonstrated 2,3-dihydroxybiphenyl 1,2-dioxygenase activity, is isolated. 2,3-Dihydroxybiphenyl 1,2-dioxygenase (23DBDO, BphC) is an extradiol-type dioxygenase that involved in third step of biphenyl degradation pathway. The nucleotide sequence of the Comamonas sp. SMN4 gene bphC, which encodes 23DBDO, was cloned into a plasmid pQE30. The His-tagged 23DBDO produced by a recombinant Escherichia coli, SG 13009 (pREP4)(pNPC), and purified with a Ni-nitrilotriacetic acid resin affinity column using the His-bind Qiagen system. The His-tagged 23DBDO construction was active. SDS-PAGE analysis of the purified active 23DBDO gave a single band of 32 kDa; this is in agreement with the size of the bphC coding region. The 23DBDO exhibited maximum activity at pH 9.0. The CD data for the pHs, showed that this enzyme had a typical a-helical folding structures at neutral pHs ranged from pH 4.5 to pH 9.0. This structure maintained up to pH 10.5. However, this high stable folding strucure was converted to unfolded structure in acidic region (pH 2.5) or in high pH (pH 12.0). The result of CD spectra observed with pH effects on 23DBDO activity, suggested that charge transition by pH change have affected change of conformational structure for 23DBDO catalytic reaction. The $K_m$ for 2,3-dihydroxybiphenyl, 3-metylcatechol, 4-methylcatechol and catechol was 11.7 $\mu$M, 24 $\mu$M, 50 mM and 625 $\mu$M.

  • PDF

USING AN ABSTRACTION OF AMINO ACID TYPES TO IMPROVE THE QUALITY OF STATISTICAL POTENTIALS FOR PROTEIN STRUCTURE PREDICTION

  • Lee, Jin-Woo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.15 no.3
    • /
    • pp.191-199
    • /
    • 2011
  • In this paper, we adopt a position specific scoring matrix as an abstraction of amino acid type to derive two new statistical potentials for protein structure prediction, and investigated its effect on the quality of the potentials compared to that derived using residue specific amino acid identity. For stringent test of the potential quality, we carried out folding simulations of 91 residue A chain of protein 2gpi, and found unexpectedly that the abstract amino acid type improved the quality of the one-body type statistical potential, but not for the two-body type statistical potential which describes long range interactions. This observation could be effectively used when one develops more accurate potentials for structure prediction, which are usually involved in merging various one-body and many-body potentials.

Effect of Fc Fusion on Folding and Immunogenicity of Middle East Respiratory Syndrome Coronavirus Spike Protein

  • Chun, Jungmin;Cho, Yeondong;Park, Ki Hoon;Choi, Hanul;Cho, Hansam;Lee, Hee-Jung;Jang, Hyun;Kim, Kyung Hyun;Oh, Yu-Kyoung;Kim, Young Bong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.5
    • /
    • pp.813-819
    • /
    • 2019
  • Middle East respiratory syndrome coronavirus (MERS-CoV) induces severe respiratory impairment with a reported mortality rate of ~36% in humans. The absence of clinically available MERS-CoV vaccines and treatments to date has resulted in uncontrolled incidence and propagation of the virus. In vaccine design, fusion with the IgG Fc domain is reported to increase the immunogenicity of various vaccine antigens. However, limited reports have documented the potential negative effects of Fc fusion on vaccine antigens. To determine whether Fc fusion affects the immunogenicity of MERS-CoV antigen, we constructed a Fcassociated MERS-CoV spike protein (eS770-Fc, 110 kDa), whereby human IgG4 Fc domain was fused to MERS-CoV spike protein (eS770) via a Gly/Pro linker using baculovirus as the expression system. For comparative analyses, two eS770 proteins lacking the IgG4 Fc domain were generated using the IdeS protease ($eS770-{\Delta}Fc$) or His tag attachment (eS770-His) and the immunogenicity of the above constructs were examined following intramuscular immunization in mice. Contrary to expectations, non-Fc spike proteins ($eS770-{\Delta}Fc$, eS770-His; 90 kDa) showed higher immunogenicity than the Fc fusion protein (eS770-Fc). Moreover, unlike non-Fc spike proteins, eS770-Fc immunization did not elicit neutralizing antibodies against MERS-CoV. The lower immunogenicity of Fc-fused eS770 was related to alterations in the structural conformation of the spike protein. Taken together, our results indicate that IgG Fc fusion reduces the immunogenicity of eS770 by interfering with the proper folding structure.

Production of human leptin in Bacillus subtilis

  • Jeong, Gi-Jun;Lee, Sang-Yeop
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.535-538
    • /
    • 2000
  • Human leptin is a 16 kDa (146 amino acids) protein secreted from adipocytes and influences body weight homeostasis. In this report, active human leptin was successfully produced in the culture medium of Bacillus subtilis. After simple purification steps consisting of ammonium sulfate precipitation and anion-exchange column chromatography, 2.3 mg of leptin with a purity of greater than 95% was obtained from the 0.5 L culture with the recovery yield of 54.9%. The purified leptin showed the correct folding structure with one disulfide bond.

  • PDF